正题

题目链接:https://www.luogu.com.cn/problem/P3703


题目大意

\(n\)个点的一棵树开始所有点有不同的颜色,\(m\)次操作

  1. 将根节点到\(x\)节点的路径上染上一种新的颜色
  2. 询问一条路径的不同颜色个数
  3. 询问一个节点的子树中的一个\(x\)使得\(x\)到根节点的颜色最多。

解题思路

操作\(1\)和\(LCT\)的\(access\)操作很相似。相同颜色之间就是实边,不同颜色之间就是虚边。

操作\(2\)就是之间\(p_x+p_y-2p_{LCA}+1\)就好了,但是考虑到操作\(3\),所以维护一个\(dfn\)序和线段树就可以查询子树最大值了。

之后维护一个\(LCT\),在\(access\)操作切换虚实边的时候修改一下线段树就好了,并且需要注意我们不能直接拿\(Splay\)的根的子树,要找到实际的树中的根,所以\(Splay\)一直往左就好了。

好像还有树链剖分的做法,线段树查询的时候维护一下末尾颜色好像就可以了,这里不多讲(我也不会)

时间复杂度\(O(n\log^2 n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10;
struct node{
int to,next;
}a[N<<1];
int n,m,cnt,tot,ls[N],rfn[N],ed[N],fa[N];
int dep[N],son[N],siz[N],top[N];
struct SegTree{
int w[N<<2],lazy[N<<2];
void Downdata(int x){
if(!lazy[x])return;
w[x*2]+=lazy[x];lazy[x*2]+=lazy[x];
w[x*2+1]+=lazy[x];lazy[x*2+1]+=lazy[x];
lazy[x]=0;return;
}
void Change(int x,int L,int R,int l,int r,int val){
if(L==l&&R==r){w[x]+=val;lazy[x]+=val;return;}
int mid=(L+R)>>1;Downdata(x);
if(r<=mid)Change(x*2,L,mid,l,r,val);
else if(l>mid)Change(x*2+1,mid+1,R,l,r,val);
else Change(x*2,L,mid,l,mid,val),Change(x*2+1,mid+1,R,mid+1,r,val);
w[x]=max(w[x*2],w[x*2+1]);return;
}
int Ask(int x,int L,int R,int l,int r){
if(L==l&&R==r)return w[x];
int mid=(L+R)>>1;Downdata(x);
if(r<=mid)return Ask(x*2,L,mid,l,r);
if(l>mid)return Ask(x*2+1,mid+1,R,l,r);
return max(Ask(x*2,L,mid,l,mid),Ask(x*2+1,mid+1,R,mid+1,r));
}
}Tr;
struct LinkCutTree{
int t[N][2],fa[N];
bool Nroot(int x)
{return fa[x]&&(t[fa[x]][0]==x||t[fa[x]][1]==x);}
bool Direct(int x)
{return t[fa[x]][1]==x;}
void Rotate(int x){
int y=fa[x],z=fa[y];
int xs=Direct(x),ys=Direct(y);
int w=t[x][xs^1];
if(Nroot(y))t[z][ys]=x;
t[x][xs^1]=y;t[y][xs]=w;
if(w)fa[w]=y;fa[y]=x;fa[x]=z;
return;
}
void Splay(int x){
while(Nroot(x)){
int y=fa[x];
if(!Nroot(y))Rotate(x);
else if(Direct(x)==Direct(y))
Rotate(y),Rotate(x);
else Rotate(x),Rotate(x);
}
return;
}
int FindRoot(int x){
while(t[x][0])x=t[x][0];
return x;
}
void Access(int x){
for(int y=0;x;y=x,x=fa[x]){
Splay(x);int z=t[x][1];
if(z)z=FindRoot(z),Tr.Change(1,1,n,rfn[z],ed[z],1);
if(y)z=FindRoot(y),Tr.Change(1,1,n,rfn[z],ed[z],-1);
t[x][1]=y;
}
return;
}
}T;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dfs1(int x){
siz[x]=1;rfn[x]=++cnt;
dep[x]=dep[fa[x]]+1;T.fa[x]=fa[x];
Tr.Change(1,1,n,cnt,cnt,dep[x]);
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa[x])continue;
fa[y]=x;dfs1(y);siz[x]+=siz[y];
if(siz[y]>siz[son[x]])son[x]=y;
}
ed[x]=cnt;
}
void dfs2(int x){
if(son[x]){
top[son[x]]=top[x];
dfs2(son[x]);
}
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa[x]||y==son[x])continue;
top[y]=y;dfs2(y);
}
return;
}
int LCA(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])
swap(x,y);
x=fa[top[x]];
}
return dep[x]<dep[y]?x:y;
}
int main()
{
// freopen("paint1.in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
dfs1(1);dfs2(1);
while(m--){
int op,x,y;
scanf("%d%d",&op,&x);
if(op==1)T.Access(x);
else if(op==2){
scanf("%d",&y);
int lca=LCA(x,y);
int p1=Tr.Ask(1,1,n,rfn[x],rfn[x]);
int p2=Tr.Ask(1,1,n,rfn[y],rfn[y]);
int p3=Tr.Ask(1,1,n,rfn[lca],rfn[lca]);
printf("%d\n",p1+p2-p3*2+1);
}
else printf("%d\n",Tr.Ask(1,1,n,rfn[x],ed[x]));
}
return 0;
}

P3703-[SDOI2017]树点涂色【LCT,线段树】的更多相关文章

  1. [Sdoi2017]树点涂色 [lct 线段树]

    [Sdoi2017]树点涂色 题意:一棵有根树,支持x到根染成新颜色,求x到y颜色数,求x子树里点到根颜色数最大值 考场发现这个信息是可减的,但是没想到lct 特意设计成lct的形式! 如何求颜色数? ...

  2. 【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树

    [BZOJ4817][Sdoi2017]树点涂色 Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路 ...

  3. 【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]

    树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Bob有一棵n个点的有根树,其中1 ...

  4. [SDOI2017][bzoj4817] 树点涂色 [LCT+线段树]

    题面 传送门 思路 $LCT$ 我们发现,这个1操作,好像非常像$LCT$里面的$Access$啊~ 那么我们尝试把$Access$操作魔改成本题中的涂色 我们令$LCT$中的每一个$splay$链代 ...

  5. BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)

    题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...

  6. BZOJ4817[Sdoi2017]树点涂色——LCT+线段树

    题目描述 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进 ...

  7. bzoj4817 & loj2001 [Sdoi2017]树点涂色 LCT + 线段树

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4817 https://loj.ac/problem/2001 题解 可以发现这个题就是 bzo ...

  8. 【bzoj4817】树点涂色 LCT+线段树+dfs序

    Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...

  9. BZOJ 4817 [Sdoi2017]树点涂色 ——LCT 线段树

    同BZOJ3779. SDOI出原题,还是弱化版的. 吃枣药丸 #include <map> #include <cmath> #include <queue> # ...

  10. BZOJ 4817: [Sdoi2017]树点涂色(lct+线段树)

    传送门 解题思路 跟重组病毒这道题很像.只是有了一个询问\(2\)的操作,然后询问\(2\)的答案其实就是\(val[x]+val[y]-2*val[lca(x,y)]+1\)(画图理解).剩下的操作 ...

随机推荐

  1. WPF 中的 Command 命令

    <Window x:Class="CommandDemo.MainWindow" xmlns="http://schemas.microsoft.com/winfx ...

  2. 【转】Java 开发必会的 Linux 命令

    转自:https://www.cnblogs.com/zhuawang/p/5212809.html 作为一个Java开发人员,有些常用的Linux命令必须掌握.即时平时开发过程中不使用Linux(U ...

  3. 阿里云sql监控配置-druid

    今天我们说说数据源和数据库连接池,熟悉java开发的同仁应该都了解C3PO,在这里不做过多的赘述了,今天我们说的是阿里DRUID,druid是后起之秀,因为它的优秀很快占领了使用市场,下边我们一起来看 ...

  4. Layui引起的对前端的一次记录

    前言 首先会做这次记录,也是因为自己也是第一次去接触这个框架,以前总是听说,并没有去用过.这次出于实习的原因,去学习了一下Layui这个"面向后端开发者的框架".其次,此篇记录仅供 ...

  5. Linux下Oracle新建用户并且将已有的数据dmp文件导入到新建的用户下的操作流程

    Oracle新建用户并且将已有的数据dmp文件导入到新建的用户下的操作流程 1.切换到oracle用户下 su - oracle 2.登录sqlplus sqlplus /nolog 3.使用sysd ...

  6. 关于ES6中Promise的应用-顺序合并Promise,并将返回结果以数组的形式输出

    1.Promise 基础知识梳理 创建一个Promise实例 const promise = new Promise(function(resolve, reject) { if (success){ ...

  7. JSP(Java Server Pages)内置对象

    request对象 (1)访问请求参数 处理HTTP请求中的各项参数.在这些参数中,最常用的就是获取访问请求参数.当通过超链接的形式发送请求时,可以为该请求传递参数,这可以通过在超链接的后面加上问好& ...

  8. blender Text on Curve Text on Sphere

    Text on Curve Shift + A 添加一个 BezierCurve Shift + A 添加一个 Text,Tab 编辑,再次 Tab 退回 Object Mode 选中 Text,Ad ...

  9. uniapp 设置背景图片

    uniapp 由于其特殊机制,导致了背景图片不能引用本地图片.只能通过 转成 base64 来进行设置 附上链接:https://oktools.net/image2base64 图片转成base64 ...

  10. JAVA 之 每日一记 之 算法( 给定一个正整数,返回它在 Excel 表中相对应的列名称。 )

    题目: 给定一个正整数,返回它在 Excel 表中相对应的列名称. 例如: 1 -> A 2 -> B 3 -> C ... 26 -> Z 27 -> AA 28 -& ...