ReentrantLock 中的 4 个坑!

JDK 1.5 之前 synchronized 的性能是比较低的,但在 JDK 1.5 中,官方推出一个重量级功能 Lock,一举改变了 Java 中锁的格局。JDK 1.5 之前当我们谈到锁时,只能使用内置锁 synchronized,但如今我们锁的实现又多了一种显式锁 Lock。
前面的文章我们已经介绍了 synchronized,详见以下列表:
《synchronized 加锁 this 和 class 的区别!》
《synchronized 优化手段之锁膨胀机制!》
《synchronized 中的 4 个优化,你知道几个?》
所以本文咱们重点来看 Lock。
Lock 简介
Lock 是一个顶级接口,它的所有方法如下图所示:

它的子类列表如下:

我们通常会使用 ReentrantLock 来定义其实例,它们之间的关联如下图所示:

PS:Sync 是同步锁的意思,FairSync 是公平锁,NonfairSync 是非公平锁。
ReentrantLock 使用
学习任何一项技能都是先从使用开始的,所以我们也不例外,咱们先来看下 ReentrantLock 的基础使用:
public class LockExample {
    // 创建锁对象
    private final ReentrantLock lock = new ReentrantLock();
    public void method() {
        // 加锁操作
        lock.lock();
        try {
            // 业务代码......
        } finally {
            // 释放锁
            lock.unlock();
        }
    }
}
ReentrantLock 在创建之后,有两个关键性的操作:
- 加锁操作:lock()
 - 释放锁操作:unlock()
 
ReentrantLock 中的坑
1.ReentrantLock 默认为非公平锁
很多人会认为(尤其是新手朋友),ReentrantLock 默认的实现是公平锁,其实并非如此,ReentrantLock 默认情况下为非公平锁(这主要是出于性能方面的考虑),比如下面这段代码:
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
    // 创建锁对象
    private static final ReentrantLock lock = new ReentrantLock();
    public static void main(String[] args) {
        // 定义线程任务
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                // 加锁
                lock.lock();
                try {
                    // 打印执行线程的名字
                    System.out.println("线程:" + Thread.currentThread().getName());
                } finally {
                    // 释放锁
                    lock.unlock();
                }
            }
        };
        // 创建多个线程
        for (int i = 0; i < 10; i++) {
            new Thread(runnable).start();
        }
    }
}
以上程序的执行结果如下:

从上述执行的结果可以看出,ReentrantLock 默认情况下为非公平锁。因为线程的名称是根据创建的先后顺序递增的,所以如果是公平锁,那么线程的执行应该是有序递增的,但从上述的结果可以看出,线程的执行和打印是无序的,这说明 ReentrantLock 默认情况下为非公平锁。
想要将 ReentrantLock 设置为公平锁也很简单,只需要在创建 ReentrantLock 时,设置一个 true 的构造参数就可以了,如下代码所示:
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
    // 创建锁对象(公平锁)
    private static final ReentrantLock lock = new ReentrantLock(true);
    public static void main(String[] args) {
        // 定义线程任务
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                // 加锁
                lock.lock();
                try {
                    // 打印执行线程的名字
                    System.out.println("线程:" + Thread.currentThread().getName());
                } finally {
                    // 释放锁
                    lock.unlock();
                }
            }
        };
        // 创建多个线程
        for (int i = 0; i < 10; i++) {
            new Thread(runnable).start();
        }
    }
}
以上程序的执行结果如下:

从上述结果可以看出,当我们显式的给 ReentrantLock 设置了 true 的构造参数之后,ReentrantLock 就变成了公平锁,线程获取锁的顺序也变成有序的了。
其实从 ReentrantLock 的源码我们也可以看出它究竟是公平锁还是非公平锁,ReentrantLock 部分源码实现如下:
 public ReentrantLock() {
     sync = new NonfairSync();
 }
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}
从上述源码中可以看出,默认情况下 ReentrantLock 会创建一个非公平锁,如果在创建时显式的设置构造参数的值为 true 时,它就会创建一个公平锁。
2.在 finally 中释放锁
使用 ReentrantLock 时一定要记得释放锁,否则就会导致该锁一直被占用,其他使用该锁的线程则会永久的等待下去,所以我们在使用 ReentrantLock 时,一定要在 finally 中释放锁,这样就可以保证锁一定会被释放。
反例
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
    // 创建锁对象
    private static final ReentrantLock lock = new ReentrantLock();
    public static void main(String[] args) {
        // 加锁操作
        lock.lock();
        System.out.println("Hello,ReentrantLock.");
        // 此处会报异常,导致锁不能正常释放
        int number = 1 / 0;
        // 释放锁
        lock.unlock();
        System.out.println("锁释放成功!");
    }
}
以上程序的执行结果如下:

从上述结果可以看出,当出现异常时锁未被正常释放,这样就会导致其他使用该锁的线程永久的处于等待状态。
正例
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
    // 创建锁对象
    private static final ReentrantLock lock = new ReentrantLock();
    public static void main(String[] args) {
        // 加锁操作
        lock.lock();
        try {
            System.out.println("Hello,ReentrantLock.");
            // 此处会报异常
            int number = 1 / 0;
        } finally {
            // 释放锁
            lock.unlock();
            System.out.println("锁释放成功!");
        }
    }
}
以上程序的执行结果如下:

从上述结果可以看出,虽然方法中出现了异常情况,但并不影响 ReentrantLock 锁的释放操作,这样其他使用此锁的线程就可以正常获取并运行了。
3.锁不能被释放多次
lock 操作的次数和 unlock 操作的次数必须一一对应,且不能出现一个锁被释放多次的情况,因为这样就会导致程序报错。
反例
一次 lock 对应了两次 unlock 操作,导致程序报错并终止执行,示例代码如下:
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
    // 创建锁对象
    private static final ReentrantLock lock = new ReentrantLock();
    public static void main(String[] args) {
        // 加锁操作
        lock.lock();
        // 第一次释放锁
        try {
            System.out.println("执行业务 1~");
            // 业务代码 1......
        } finally {
            // 释放锁
            lock.unlock();
            System.out.println("锁释锁");
        }
        // 第二次释放锁
        try {
            System.out.println("执行业务 2~");
            // 业务代码 2......
        } finally {
            // 释放锁
            lock.unlock();
            System.out.println("锁释锁");
        }
        // 最后的打印操作
        System.out.println("程序执行完成.");
    }
}
以上程序的执行结果如下:

从上述结果可以看出,执行第 2 个 unlock 时,程序报错并终止执行了,导致异常之后的代码都未正常执行。
4.lock 不要放在 try 代码内
在使用 ReentrantLock 时,需要注意不要将加锁操作放在 try 代码中,这样会导致未加锁成功就执行了释放锁的操作,从而导致程序执行异常。
反例
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
    // 创建锁对象
    private static final ReentrantLock lock = new ReentrantLock();
    public static void main(String[] args) {
        try {
            // 此处异常
            int num = 1 / 0;
            // 加锁操作
            lock.lock();
        } finally {
            // 释放锁
            lock.unlock();
            System.out.println("锁释锁");
        }
        System.out.println("程序执行完成.");
    }
}
以上程序的执行结果如下:

从上述结果可以看出,如果将加锁操作放在 try 代码中,可能会导致两个问题:
- 未加锁成功就执行了释放锁的操作,从而导致了新的异常;
 - 释放锁的异常会覆盖程序原有的异常,从而增加了排查问题的难度。
 
总结
本文介绍了 Java 中的显式锁 Lock 及其子类 ReentrantLock 的使用和注意事项,Lock 在 Java 中占据了锁的半壁江山,但在使用时却要注意 4 个问题:
- 默认情况下 ReentrantLock 为非公平锁而非公平锁;
 - 加锁次数和释放锁次数一定要保持一致,否则会导致线程阻塞或程序异常;
 - 加锁操作一定要放在 try 代码之前,这样可以避免未加锁成功又释放锁的异常;
 - 释放锁一定要放在 finally 中,否则会导致线程阻塞。
 
本系列推荐文章
- 线程的 4 种创建方法和使用详解!
 - Java中用户线程和守护线程区别这么大?
 - 深入理解线程池 ThreadPool
 - 线程池的7种创建方式,强烈推荐你用它...
 - 池化技术到达有多牛?看了线程和线程池的对比吓我一跳!
 - 并发中的线程同步与锁
 - synchronized 加锁 this 和 class 的区别!
 - volatile 和 synchronized 的区别
 - 轻量级锁一定比重量级锁快吗?
 - 这样终止线程,竟然会导致服务宕机?
 - SimpleDateFormat线程不安全的5种解决方案!
 - ThreadLocal不好用?那是你没用对!
 - ThreadLocal内存溢出代码演示和原因分析!
 - Semaphore自白:限流器用我就对了!
 - CountDownLatch:别浪,等人齐再团!
 - CyclicBarrier:人齐了,司机就可以发车了!
 - synchronized 优化手段之锁膨胀机制
 - synchronized 中的 4 个优化,你知道几个?
 
关注公号「Java中文社群」查看更多有意思、涨知识的 Java 并发文章。
ReentrantLock 中的 4 个坑!的更多相关文章
- 项目中踩过的坑之-sessionStorage
		
总想写点什么,却不知道从何写起,那就从项目中踩过的坑开始吧,希望能给可能碰到相同问题的小伙伴一点帮助. 项目情景: 有一个id,要求通过当前网页打开一个新页面(不是当前页面),并把id传给打开的新页面 ...
 - Java多线程12:ReentrantLock中的方法
		
公平锁与非公平锁 ReentrantLock有一个很大的特点,就是可以指定锁是公平锁还是非公平锁,公平锁表示线程获取锁的顺序是按照线程排队的顺序来分配的,而非公平锁就是一种获取锁的抢占机制,是随机获得 ...
 - 使用ffmpeg视频编码过程中踩的一个坑
		
今天说说使用ffmpeg在写视频编码程序中踩的一个坑,这个坑让我花了好多时间,回头想想,非常多时候一旦思维定势真的挺难突破的.以下是不对的编码结果: ...
 - 细数Python Flask微信公众号开发中遇到的那些坑
		
最近两三个月的时间,断断续续边学边做完成了一个微信公众号页面的开发工作.这是一个快递系统,主要功能有用户管理.寄收件地址管理.用户下单,订单管理,订单查询及一些宣传页面等.本文主要细数下开发过程中遇到 ...
 - 小程序中曾经遇到的坑(1)----canvas画布
		
目前正在开发小程序,在开发过程中,总会遇到一些坑,而这些坑并不会有很多开发者遇到而说出来.这里先记录一条我开发过程中遇到的问题,以便后人在开发中能够更容易的解决问题!!! 首先,小程序在canvas画 ...
 - 记一次SpringBoot 开发中所遇到的坑和解决方法
		
记一次SpringBoot 开发中所遇到的坑和解决方法 mybatis返回Integer为0,自动转型出现空指针异常 当我们使用Integer去接受数据库中表的数据,如果返回的数据中为0,那么Inte ...
 - java多线程20 : ReentrantLock中的方法 ,公平锁和非公平锁
		
公平锁与非公平锁 ReentrantLock有一个很大的特点,就是可以指定锁是公平锁还是非公平锁,公平锁表示线程获取锁的顺序是按照线程排队的顺序来分配的,而非公平锁就是一种获取锁的抢占机制,是随机获得 ...
 - 记录vue中一些有意思的坑
		
记录vue中一些有意思的坑 'message' handler took 401ms 在出现这个之前,我一直纠结于 是如何使用vue-router或者不使用它,通过类似的v-if来实现.结果却出现这个 ...
 - vue 单页应用中微信支付的坑
		
vue 单页应用中微信支付的坑 标签(空格分隔): 微信 支付 坑 vue 场景 在微信H5页面(使用 vue-router2 控制路由的 vue2 单页应用项目)中使用微信 jssdk 进行微信支付 ...
 
随机推荐
- 4、saltstack的使用
			
官方文档地址:http://repo.saltstack.com/#rhel 4.1.saltstatck介绍: 用户要一致,这里使用的是root用户: 用于批量管理成百上千的服务器: 并行的分发,使 ...
 - ZSH主题
			
All the current themes can be found in the themes/ directory in the oh-my-zsh distribution. See list ...
 - Java003-String字符串
			
1.这两种定义有什么区别 /*** * 面试题:这两种定义方式有什么区别? * 如何证明? * @param args */ public static void main(String[] args ...
 - 从零搭建一个IdentityServer——资源与访问控制
			
IdentityServer作为授权服务器它的最终目的是用于对资源进行管控,这里所说的资源有两种,其一是API资源,实际上也就是OIDC协议中客户端(RP)所需要访问的一系列受保护的资源(API),授 ...
 - LeetCode 847. Shortest Path Visiting All Nodes
			
题目链接:https://leetcode.com/problems/shortest-path-visiting-all-nodes/ 题意:已知一条无向图,问经过所有点的最短路径是多长,边权都为1 ...
 - [Vue warn]: “TypeError: Cannot read property ‘slideTo‘ of undefined“
			
问题: 使用Vue插件swiper,报如下bug: 解决: 报错原因: vue-awesome-swiper下载版本问题 解决: 如果写成下面这样报错: 则加上$ 反之,删除$ 问题解决
 - Jenkins 进阶篇 - 参数化构建
			
我们在构建任务时经常会遇到这样的情景,一个任务配置好了以后,在后面的构建过程中,又会修改一些配置.例如,我们构建项目的代码可能是拉取指定的分支或者是Tag进行构建,又或者是在构建是需要指定特定的运行平 ...
 - nacos Connection refused (Connection refused)
			
记录一次"异常bug",具体信息如下.主要是记录一下处理过程,可能口水话比较多,如果想看结果,直接往后拉即可. 最后一行 起初,运维同事找到我,跟我说程序出问题了,系统升级,一直连 ...
 - P2015
			
二叉苹果树 1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include< ...
 - 【Lucas组合数定理+中国剩余定理】Mysterious For-HDU 4373
			
Mysterious For-HDU 4373 题目描述 MatRush is an ACMer from ZJUT, and he always love to create some specia ...