说明

当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复

要想实现精准一次性,还需要将数据提交和offset提交维护在一个事务中

官网说明

Your own data store
For data stores that support transactions, saving offsets in the same transaction as the results can keep the two in sync, even in failure situations. If you’re careful about detecting repeated or skipped offset ranges, rolling back the transaction prevents duplicated or lost messages from affecting results. This gives the equivalent of exactly-once semantics. It is also possible to use this tactic even for outputs that result from aggregations, which are typically hard to make idempotent. 您自己的数据存储
对于支持事务的数据存储,即使在失败情况下,将偏移与结果保存在同一事务中也可以使两者保持同步。 如果您在检测重复或跳过的偏移量范围时很谨慎,则回滚事务可防止重复或丢失的消息影响结果。 这相当于一次语义。 即使是由于聚合而产生的输出(通常很难使等幂),也可以使用此策略。

整体逻辑

offset建表语句

CREATE TABLE `offset_manager` (
`groupid` varchar(50) DEFAULT NULL,
`topic` varchar(50) DEFAULT NULL,
`partition` int(11) DEFAULT NULL,
`untiloffset` mediumtext,
UNIQUE KEY `offset_unique` (`groupid`,`topic`,`partition`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

代码实现

在线教育:知识点实时统计

import java.sql.{Connection, ResultSet}
import com.atguigu.qzpoint.util.{DataSourceUtil, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.SparkConf
import scala.collection.mutable /**
* @description: 知识点掌握实时统计
* @author: HaoWu
* @create: 2020年10月13日
*/
object QzPointStreaming_V2 {
val groupid = "test1" def main(args: Array[String]): Unit = {
/**
* 初始化ssc
*/
val conf: SparkConf = new SparkConf()
.setAppName("test1")
.setMaster("local[*]")
.set("spark.streaming.kafka.maxRatePerPartition", "100")
.set("spark.streaming.backpressure.enabled", "true")
val ssc = new StreamingContext(conf, Seconds(3)) /**
* 读取mysql历史的offset
*/
val sqlProxy = new SqlProxy()
val client: Connection = DataSourceUtil.getConnection
val offsetMap = new mutable.HashMap[TopicPartition, Long]
try {
sqlProxy.executeQuery(client, "select * from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
override def process(rs: ResultSet): Unit = {
while (rs.next()) {
val model = new TopicPartition(rs.getString(2), rs.getInt(3))
val offset = rs.getLong(4)
offsetMap.put(model, offset)
}
rs.close()
}
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
} /**
* 消费kafka主题,获取数据流
*/
val topics = Array("qz_log")
val kafkaMap: Map[String, Object] = Map[String, Object](
"bootstrap.servers" -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> groupid,
"auto.offset.reset" -> "earliest",
//手动维护offset,要设置为false
"enable.auto.commit" -> (false: Boolean)
)
val inStream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
//第一次启动程序消费
KafkaUtils.createDirectStream(
ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
} else {
//程序挂了,恢复程序
KafkaUtils.createDirectStream(
ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
} //*************************************************处理逻辑 开始**********************************************// /**
* 逻辑处理的套路:统计当前批 + DB中历史的数据 => 更新DB中的表数据
*/
inStream
.filter(
record => record.value().split("\t") == 6
) //*************************************************处理逻辑 结束**********************************************// /**
* 逻辑处理完后,更新 mysql中维护的offset
*/
inStream.foreachRDD(rdd => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
for (or <- offsetRanges) {
sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
Array(groupid, or.topic, or.partition.toString, or.untilOffset))
}
/*for (i <- 0 until 100000) {
val model = new LearnModel(1, 1, 1, 1, 1, 1, "", 2, 1l, 1l, 1, 1)
map.put(UUID.randomUUID().toString, model)
}*/
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
}) //启动
ssc.start()
//阻塞
ssc.awaitTermination()
}
}

SparkStreaming消费Kafka,手动维护Offset到Mysql的更多相关文章

  1. spark streaming读取kakfka数据手动维护offset

    在spark streaming读取kafka的数据中,spark streaming提供了两个接口读取kafka中的数据,分别是KafkaUtils.createDstream,KafkaUtils ...

  2. Spark Streaming消费Kafka Direct保存offset到Redis,实现数据零丢失和exactly once

    一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章 ...

  3. SparkStreaming消费kafka中数据的方式

    有两种:Direct直连方式.Receiver方式 1.Receiver方式: 使用kafka高层次的consumer API来实现,receiver从kafka中获取的数据都保存在spark exc ...

  4. kafka手动设置offset

    项目中经常有需求不是消费kafka队列全部的数据,取区间数据 查询kafka最大的offset: ./kafka-run-class.sh kafka.tools.GetOffsetShell --b ...

  5. Spring-Kafka —— 实现批量消费和手动提交offset

    spring-kafka的官方文档介绍,可以知道自1.1版本之后, @KafkaListener开始支持批量消费,只需要设置batchListener参数为true 把application.yml中 ...

  6. sparkstreaming消费kafka后bulk到es

    不使用es-hadoop的saveToES,与scala版本冲突问题太多.不使用bulkprocessor,异步提交,es容易oom,速度反而不快.使用BulkRequestBuilder同步提交. ...

  7. 使用spark-streaming实时读取Kafka数据统计结果存入MySQL

    在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订 ...

  8. 17-Flink消费Kafka写入Mysql

    戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Fli ...

  9. SparkStreaming与Kafka,SparkStreaming接收Kafka数据的两种方式

    SparkStreaming接收Kafka数据的两种方式 SparkStreaming接收数据原理 一.SparkStreaming + Kafka Receiver模式 二.SparkStreami ...

随机推荐

  1. 把数组排成最小的数 牛客网 剑指Offer

    把数组排成最小的数 牛客网 剑指Offer 题目描述 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字能 ...

  2. candy leetcode C++

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

  3. OAuth 2.0 的探险之旅

    前言 OAuth 2.0 全称是 Open Authorization 2.0, 是用于授权(authorization)的行业标准协议. OAuth 2.0 专注于客户端开发人员的简单性,同时为 W ...

  4. upload-labs通关攻略(1-11关)

    upload-labs通关攻略 upload-labs是练习文件上传很好的一个靶场,建议把upload-labs关卡全部练习一遍 1.下载安装 下载地址 链接:https://pan.baidu.co ...

  5. Redis6.2发布 地理位置功能增强了什么?

    原文地址:https://developer.aliyun.com/article/780257 Redis社区最近刚刚发布Redis6.2 RC1版本,在本次发布中,阿里云Tair团队(阿里云云内存 ...

  6. Linux&C ——信号以及信号处理

    linux信号的简单介绍 信号的捕捉和处理 信号处理函数的返回 信号的发送 信号的屏蔽 一:linux信号的简单介绍. 信号提供给我们一种异步处理事件的方法,由于进程之间彼此的地址空间是独立的,所以进 ...

  7. Navicat15最新版本破解 亲测可用!!!(Navicat Premium 注册出现 No All Pattern Found! File Already Patched)

    1.下载Navicat Premium官网https://www.navicat.com.cn/下载最新版本下载安装 2.本人网盘链接:https://pan.baidu.com/s/1ncSaxId ...

  8. oracle合并列的函数wm_concat的使用详解

    oracle wm_concat(column)函数使我们经常会使用到的,下面就教您如何使用oracle wm_concat(column)函数实现字段合并,如果您对oracle wm_concat( ...

  9. [啃书] 第1篇 - 输入输出/变量类型/math函数

    啃书部分已单独做成Gitbook了,后续不再更新.详情访问个人网站ccoding.cn或ccbyte.github.io 说在前面 一直想刷算法找不到很适合的书,后来发现考PAT很多推荐<算法笔 ...

  10. (一)初识MySQL

    JavaEE:企业级Java开发  Web 前端(页面:展示,数据) 后台(连接点,连接数据库JDBC,链接前端(控制,控制视图跳转和给前端传递数据)) 数据库(存数据,Txt,Excel,word) ...