说明

当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复

要想实现精准一次性,还需要将数据提交和offset提交维护在一个事务中

官网说明

Your own data store
For data stores that support transactions, saving offsets in the same transaction as the results can keep the two in sync, even in failure situations. If you’re careful about detecting repeated or skipped offset ranges, rolling back the transaction prevents duplicated or lost messages from affecting results. This gives the equivalent of exactly-once semantics. It is also possible to use this tactic even for outputs that result from aggregations, which are typically hard to make idempotent. 您自己的数据存储
对于支持事务的数据存储,即使在失败情况下,将偏移与结果保存在同一事务中也可以使两者保持同步。 如果您在检测重复或跳过的偏移量范围时很谨慎,则回滚事务可防止重复或丢失的消息影响结果。 这相当于一次语义。 即使是由于聚合而产生的输出(通常很难使等幂),也可以使用此策略。

整体逻辑

offset建表语句

CREATE TABLE `offset_manager` (
`groupid` varchar(50) DEFAULT NULL,
`topic` varchar(50) DEFAULT NULL,
`partition` int(11) DEFAULT NULL,
`untiloffset` mediumtext,
UNIQUE KEY `offset_unique` (`groupid`,`topic`,`partition`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

代码实现

在线教育:知识点实时统计

import java.sql.{Connection, ResultSet}
import com.atguigu.qzpoint.util.{DataSourceUtil, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.SparkConf
import scala.collection.mutable /**
* @description: 知识点掌握实时统计
* @author: HaoWu
* @create: 2020年10月13日
*/
object QzPointStreaming_V2 {
val groupid = "test1" def main(args: Array[String]): Unit = {
/**
* 初始化ssc
*/
val conf: SparkConf = new SparkConf()
.setAppName("test1")
.setMaster("local[*]")
.set("spark.streaming.kafka.maxRatePerPartition", "100")
.set("spark.streaming.backpressure.enabled", "true")
val ssc = new StreamingContext(conf, Seconds(3)) /**
* 读取mysql历史的offset
*/
val sqlProxy = new SqlProxy()
val client: Connection = DataSourceUtil.getConnection
val offsetMap = new mutable.HashMap[TopicPartition, Long]
try {
sqlProxy.executeQuery(client, "select * from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
override def process(rs: ResultSet): Unit = {
while (rs.next()) {
val model = new TopicPartition(rs.getString(2), rs.getInt(3))
val offset = rs.getLong(4)
offsetMap.put(model, offset)
}
rs.close()
}
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
} /**
* 消费kafka主题,获取数据流
*/
val topics = Array("qz_log")
val kafkaMap: Map[String, Object] = Map[String, Object](
"bootstrap.servers" -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> groupid,
"auto.offset.reset" -> "earliest",
//手动维护offset,要设置为false
"enable.auto.commit" -> (false: Boolean)
)
val inStream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
//第一次启动程序消费
KafkaUtils.createDirectStream(
ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
} else {
//程序挂了,恢复程序
KafkaUtils.createDirectStream(
ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
} //*************************************************处理逻辑 开始**********************************************// /**
* 逻辑处理的套路:统计当前批 + DB中历史的数据 => 更新DB中的表数据
*/
inStream
.filter(
record => record.value().split("\t") == 6
) //*************************************************处理逻辑 结束**********************************************// /**
* 逻辑处理完后,更新 mysql中维护的offset
*/
inStream.foreachRDD(rdd => {
val sqlProxy = new SqlProxy()
val client = DataSourceUtil.getConnection
try {
val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
for (or <- offsetRanges) {
sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
Array(groupid, or.topic, or.partition.toString, or.untilOffset))
}
/*for (i <- 0 until 100000) {
val model = new LearnModel(1, 1, 1, 1, 1, 1, "", 2, 1l, 1l, 1, 1)
map.put(UUID.randomUUID().toString, model)
}*/
} catch {
case e: Exception => e.printStackTrace()
} finally {
sqlProxy.shutdown(client)
}
}) //启动
ssc.start()
//阻塞
ssc.awaitTermination()
}
}

SparkStreaming消费Kafka,手动维护Offset到Mysql的更多相关文章

  1. spark streaming读取kakfka数据手动维护offset

    在spark streaming读取kafka的数据中,spark streaming提供了两个接口读取kafka中的数据,分别是KafkaUtils.createDstream,KafkaUtils ...

  2. Spark Streaming消费Kafka Direct保存offset到Redis,实现数据零丢失和exactly once

    一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章 ...

  3. SparkStreaming消费kafka中数据的方式

    有两种:Direct直连方式.Receiver方式 1.Receiver方式: 使用kafka高层次的consumer API来实现,receiver从kafka中获取的数据都保存在spark exc ...

  4. kafka手动设置offset

    项目中经常有需求不是消费kafka队列全部的数据,取区间数据 查询kafka最大的offset: ./kafka-run-class.sh kafka.tools.GetOffsetShell --b ...

  5. Spring-Kafka —— 实现批量消费和手动提交offset

    spring-kafka的官方文档介绍,可以知道自1.1版本之后, @KafkaListener开始支持批量消费,只需要设置batchListener参数为true 把application.yml中 ...

  6. sparkstreaming消费kafka后bulk到es

    不使用es-hadoop的saveToES,与scala版本冲突问题太多.不使用bulkprocessor,异步提交,es容易oom,速度反而不快.使用BulkRequestBuilder同步提交. ...

  7. 使用spark-streaming实时读取Kafka数据统计结果存入MySQL

    在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订 ...

  8. 17-Flink消费Kafka写入Mysql

    戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Fli ...

  9. SparkStreaming与Kafka,SparkStreaming接收Kafka数据的两种方式

    SparkStreaming接收Kafka数据的两种方式 SparkStreaming接收数据原理 一.SparkStreaming + Kafka Receiver模式 二.SparkStreami ...

随机推荐

  1. PWN学习之格式化字符串漏洞

    目录 PWN学习之格式化字符串漏洞 格式化输出函数 格式化字符串漏洞 漏洞利用 使程序崩溃 栈数据泄露 任意地址内存泄漏 栈数据覆盖 任意地址内存覆盖 PWN学习之格式化字符串漏洞 格式化输出函数 可 ...

  2. scrapy 的response 的相关属性

    Scrapy中response介绍.属性以及内容提取   解析response parse()方法的参数 response 是start_urls里面的链接爬取后的结果.所以在parse()方法中,我 ...

  3. Centos7上安装docker (新手版本)

    1首先要有一个安装好的Centos7 2打开终端,输入一下命令(自动安装最新版本) curl -fsSL https://get.docker.com | bash -s docker --mirro ...

  4. 全面!总结BQ系列阻抗跟踪电量计化学Chemical ID配置和Golden学习方法

    BQ系列阻抗跟踪电量计SOC最高能达到1%,功能强大,应用起来也比较复杂.不仅要配置好参数,匹配好化学ID,并且进行好Golden学习和相关测试.本文就讲述ID匹配,Golden学习和测试的终极方法流 ...

  5. journalctl常用命令

    journalctl -xe 查看全部日志# 以flow形式查看日志 $ journalctl -f # 查看内核日志 $ journalctl -k # 查看指定服务日志 $ journalctl ...

  6. Jenkins+SVN+Maven+testNG管理项目

    1.登录访问:http://localhost:8080/jenkins 2.系统管理 => 全局工具配置 => ADD JDK  AND  Add Maven 3.安装SVN插件:系统管 ...

  7. docker添加sudo权限

    sudo groupadd docker  # 添加group sudo gpasswd -a think docker  # 添加用户到组 sudo service docker restart n ...

  8. python 字符串和时间格式(datetime)相互转换-

    2019-03-17 11:00:00格式转化 import datetime # str转时间格式: dd = '2019-03-17 11:00:00' dd = datetime.datetim ...

  9. 日记啦QWWQ

    随便写写 时间 :2021年11月15日 今天是在博客园创建博客的第一天,彻底放弃在CSDN中的博客,广告实在是太多了,QWQ. 来计科的第一个学期就快要结束了,期间有很多的遗憾,往后加油吧! 没什么 ...

  10. js--history 对象详解

    前言 我们浏览一个网页时可能不太会注意网页前进后退这些操作,但是在开发时你是否想过页面之间的跳转经历了什么,浏览器时怎么保存的页面信息,重新返回上一个页面的时候是否需要重新加载页面呢,会有很对疑问,要 ...