分治FFT小记🐤
分治FFT:在 $O(n \log^2 n)$ 的时间内求出类似于 $f_i=\sum\limits_{j=0}^{i-1}g(i-j)f(j)$ 之类的递推式
思想:同 CDQ 分治的思想,先分成左半边和右半边,先处理左半边,然后计算左半边对右半边的影响,最后处理右半边。
注意事项:
1. 不是所有这样的式子都可以用多项式求逆等解决,很多还是要用分治FFT的
2. 式子末尾带的常数需要一开始在分治前就设好
3. 千万不要每次都做长度为 $n$ 的卷积(动动脑子),看看下面的公式:$f'(i)=\sum\limits_{j=l}^{mid}f(j)g(i-j)$
就是 $f$ 的 $[l,mid]$ 项与 $g$ 的 $[1,r]$ 项做卷积(注意 $i$ 的范围为 $[mid+1,r]$),于是将 $f$ 往下平移 $l$,$g$ 往下平移 $1$,做一个长度为 $r-l-1$ 的卷积(但是代码中写 FFT 时要写 $r-l$),然后回移 $l+1$ 位即可!
4. 如果 $g(i-j)$ 前还带有只与 $i$ 有关的式子,加的时候处理一下即可。
分治FFT小记🐤的更多相关文章
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 分治FFT的三种含义
分治FFT是几个算法的统称.它们之间并无关联. 分治多项式乘法 问题如求\(\prod_{i=1}^na_ix+b\). 若挨个乘复杂度为\(O(n^2\log n)\),可分治做这件事,复杂度为\( ...
- 【XSY2666】排列问题 DP 容斥原理 分治FFT
题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...
- 【XSY2887】【GDOI2018】小学生图论题 分治FFT 多项式exp
题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to ...
- prime distance on a tree(点分治+fft)
最裸的点分治+fft,调了好久,太菜了.... #include<iostream> #include<cstring> #include<cstdio> #inc ...
- 【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理
题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 1525 ...
- 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...
随机推荐
- 【LeetCode】641. Design Circular Deque 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/design-ci ...
- MySQL中视图的定义、原理--触发器
视图概述 视图是一个虚拟表,其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据.但是,视图并不在数据库中以存储的数据值集形式存在.行和列数据来自由定义视图的查询所引用的表,并且在引用 ...
- 第二十个知识点:Merkle-Damgaard hash函数如何构造
第二十个知识点:Merkle-Damgaard hash函数如何构造 这里讲的是MD变换,MD变换的全称为Merkle-Damgaard变换.我们平时接触的hash函数都是先构造出一个防碰撞的压缩函数 ...
- Generating Adversarial Examples with Adversarial Networks
目录 概 主要内容 black-box 拓展 Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial ...
- MQ消费失败,自动重试思路
在遇到与第三方系统做对接时,MQ无疑是非常好的解决方案(解耦.异步).但是如果引入MQ组件,随之要考虑的问题就变多了,如何保证MQ消息能够正常被业务消费.所以引入MQ消费失败情况下,自动重试功能是非常 ...
- <学习opencv>图像变换
拉伸.收缩.扭曲和旋转 统一调整大小 我们经常会遇到一些我们希望转换为其他尺寸的图像. 我们可能想要扩大或缩小图像; 这两项任务都是由同一个功能完成的. cv::resize() 该cv::resiz ...
- 【MySQL作业】分组查询 group by 子句——美和易思分组查询应用习题
点击打开所使用到的数据库>>> 1.按照商品类型分组统计商品数量和平均单价,并按平均单价升序显示. -- 按照商品类型分组统计商品数量和平均单价,并按平均单价升序显示: select ...
- 使用docker快速部署一个consul集群
作为一个开发者,有时候需要一个集群环境,之前的做法要么就是使用多个虚拟机,要么就是采用不同的端口来模拟,但是虚拟机比较占内存,而且启动慢,采用不同的端口来模拟,管理起来比较麻烦一些,程序隔离性差一些. ...
- shell3-循环
常用的循环语句有3种: <1>for <2>while <3>utile 1.for语句的格式: for 变量名 in 列表: do 循环体 done 如何生成列表 ...
- pytest动态添加命令行参数并获取(钩子函数:pytest_addoption)
考虑场景: 我们的自动化用例需要支持在不同测试环境运行,有时候在dev环境运行,有时候在test环境运行: 有时候需要根据某个参数不同的参数值,执行不同的业务逻辑: 上面的场景我们都可以通过" ...