【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:
https://leetcode.com/problems/maximum-subarray/#/description
题目描述
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目大意
找出子数组的最大和。
解题方法
暴力解法
所谓暴力解法,就是找出所有子数组的最大的和。
为了快速求子数组的和,我们有个常用的技巧,就是用个 preSum[i] 数组表示在 i 位置之前的数组的和。即 preSum[i] = sum(num[0]...nums[i])。
然后使用两重循环,遍历所有的子数组,子数组和可以用 preSum[j] - preSum[i] 直接求出。
总的时间复杂度是 O(N ^ 2),可以通过。
C++代码如下:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
const int N = nums.size();
vector<int> preSum(N + 1, 0);
for (int i = 0; i < N; ++i) {
preSum[i + 1] = preSum[i] + nums[i];
}
int res = INT_MIN;
for (int i = 0; i < N + 1; ++i) {
for (int j = i + 1; j < N + 1; ++j) {
res = max(res, preSum[j] - preSum[i]);
}
}
return res;
}
};
动态规划
明显的DP方法去解决。
通过构建一个和原长一样长的数组, dp 数组的含义是以 dp[i] 为结尾的最大子数组的和。
状态转移公式:
dp[i] = dp[i - 1] + nums[i]当 nums[i] >= 0 。dp[i] = nums[i]当 nums[i] < 0 。
题目求的最大子数组的和,就是 dp 数组的最大值。
Java 代码如下:
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
dp[0] = nums[0];
int max = dp[0];
for(int i = 1; i < len; i++){
dp[i] = nums[i] + (dp[i -1] > 0 ? dp[i -1] : 0);
max = Math.max(max, dp[i]);
}
return max;
}
}
二刷,Python解法如下:
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
cur, prev = 0, 0
res = float("-inf")
for i in range(N):
cur = nums[i] + (prev if prev > 0 else 0)
prev = cur
res = max(res, cur)
return res
三刷,C++解法如下:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
const int N = nums.size();
int res = nums[0];
vector<int> dp(N, 0); // 以i为结尾的最大子数组的max subarray.
dp[0] = nums[0];
for (int i = 1; i < N; ++i) {
dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
res = max(res, dp[i]);
}
return res;
}
};
日期
2017 年 5 月 2 日
2018 年 11 月 19 日 —— 周一又开始了
2020 年 4 月 3 日 —— 这个题是英文版leetcode的每日一题
【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)的更多相关文章
- LeetCode 53. Maximum Subarray最大子序和 (C++)
题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [leetcode]53. Maximum Subarray最大子数组和
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- 53. Maximum Subarray最大子序和
网址:https://leetcode.com/problems/maximum-subarray/submissions/ 很简单的动态规划 我们可以把 dp[i] 表示为index为 i 的位置上 ...
- 【LeetCode】Maximum Subarray(最大子序和)
这道题是LeetCode里的第53道题. 题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1 ...
- [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- 【LeetCode】26. Remove Duplicates from Sorted Array 解题报告(Python&C++&Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 双指针 日期 [LeetCode] https:// ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
随机推荐
- 解决CentOS7 docker容器映射端口只监听ipv6的问题
问题现象 docker容器起来以后,查看9100端口监听情况,如下图: $ ss -lntp State Recv-Q Send-Q Local Address:Port Peer Address:P ...
- 半天做完的数据报表,YonBuilder只要十几分钟,0代码开发
进入数字化时代,拍脑袋的决策方式显然不靠谱,一切要靠数据说话.与信息化时代相比,数字化时代的企业对数据的应用更广泛.更深入.为了应对激烈的市场竞争,企业经营决策者们对数据的依赖度越来越高,企业各个业务 ...
- hadoop运行jar包报错
执行命令:[root@hadoop102 mapreduce]# hadoop jar mapreduce2_maven.jar Filter 错误信息:Exception in thread &qu ...
- 学习java的第十天
一.今日收获 1.java完全学习手册第二章2.9程序流程控制中的选择结构与顺序结构的例题 2.观看哔哩哔哩上的教学视频 二.今日问题 1.例题的问题不大,需要注意大小写,新的语句记忆不牢 2.哔哩哔 ...
- ICCV2021 | TOOD:任务对齐的单阶段目标检测
前言 单阶段目标检测通常通过优化目标分类和定位两个子任务来实现,使用具有两个平行分支的头部,这可能会导致两个任务之间的预测出现一定程度的空间错位.本文提出了一种任务对齐的一阶段目标检测(TOOD) ...
- [源码解析] PyTorch分布式优化器(2)----数据并行优化器
[源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...
- Spark(二十)【SparkSQL将CSV导入Kudu】
目录 SparkSql 将CSV导入kudu pom 依赖 scala 代码 启动脚本 SparkSql 将CSV导入kudu pom 依赖 <properties> <spark. ...
- Java Swing布局管理器GridBagLayout的使用示例 [转]
GridBagLayout是java里面最重要的布局管理器之一,可以做出很复杂的布局,可以说GridBagLayout是必须要学好的的, GridBagLayout 类是一个灵活的布局管理器,它不要求 ...
- Shell脚本字符串截取方法总结
Shell脚本8种字符串截取方法总结转自:https://www.cnblogs.com/ralphdc/p/8032335.html Linux 的字符串截取很有用.有八种方法.假设有变量 var= ...
- Spring整合Ibatis之SqlMapClientDaoSupport
前言 HibernateDaoSupport SqlMapClientDaoSupport . 其实就作用而言两者是一样的,都是为提供DAO支持,为访问数据库提供支持. 只不过HibernateD ...