【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:
https://leetcode.com/problems/maximum-subarray/#/description
题目描述
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目大意
找出子数组的最大和。
解题方法
暴力解法
所谓暴力解法,就是找出所有子数组的最大的和。
为了快速求子数组的和,我们有个常用的技巧,就是用个 preSum[i] 数组表示在 i 位置之前的数组的和。即 preSum[i] = sum(num[0]...nums[i])。
然后使用两重循环,遍历所有的子数组,子数组和可以用 preSum[j] - preSum[i] 直接求出。
总的时间复杂度是 O(N ^ 2),可以通过。
C++代码如下:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
const int N = nums.size();
vector<int> preSum(N + 1, 0);
for (int i = 0; i < N; ++i) {
preSum[i + 1] = preSum[i] + nums[i];
}
int res = INT_MIN;
for (int i = 0; i < N + 1; ++i) {
for (int j = i + 1; j < N + 1; ++j) {
res = max(res, preSum[j] - preSum[i]);
}
}
return res;
}
};
动态规划
明显的DP方法去解决。
通过构建一个和原长一样长的数组, dp 数组的含义是以 dp[i] 为结尾的最大子数组的和。
状态转移公式:
dp[i] = dp[i - 1] + nums[i]当 nums[i] >= 0 。dp[i] = nums[i]当 nums[i] < 0 。
题目求的最大子数组的和,就是 dp 数组的最大值。
Java 代码如下:
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
dp[0] = nums[0];
int max = dp[0];
for(int i = 1; i < len; i++){
dp[i] = nums[i] + (dp[i -1] > 0 ? dp[i -1] : 0);
max = Math.max(max, dp[i]);
}
return max;
}
}
二刷,Python解法如下:
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
N = len(nums)
cur, prev = 0, 0
res = float("-inf")
for i in range(N):
cur = nums[i] + (prev if prev > 0 else 0)
prev = cur
res = max(res, cur)
return res
三刷,C++解法如下:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
const int N = nums.size();
int res = nums[0];
vector<int> dp(N, 0); // 以i为结尾的最大子数组的max subarray.
dp[0] = nums[0];
for (int i = 1; i < N; ++i) {
dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
res = max(res, dp[i]);
}
return res;
}
};
日期
2017 年 5 月 2 日
2018 年 11 月 19 日 —— 周一又开始了
2020 年 4 月 3 日 —— 这个题是英文版leetcode的每日一题
【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)的更多相关文章
- LeetCode 53. Maximum Subarray最大子序和 (C++)
题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [leetcode]53. Maximum Subarray最大子数组和
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- 53. Maximum Subarray最大子序和
网址:https://leetcode.com/problems/maximum-subarray/submissions/ 很简单的动态规划 我们可以把 dp[i] 表示为index为 i 的位置上 ...
- 【LeetCode】Maximum Subarray(最大子序和)
这道题是LeetCode里的第53道题. 题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1 ...
- [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- 【LeetCode】26. Remove Duplicates from Sorted Array 解题报告(Python&C++&Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 双指针 日期 [LeetCode] https:// ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
随机推荐
- Can't connect to HTTPS URL because the SSL module is not available. - skipping
今天用pip3安装第三方库的时候报了这样一个错: Can't connect to HTTPS URL because the SSL module is not available. - skipp ...
- 54. Flatten Binary Tree to Linked List
Flatten Binary Tree to Linked List My Submissions QuestionEditorial Solution Total Accepted: 81373 T ...
- ansible-playbook 安装redis 主从
ansible-playbook 安装redis 主从 手动在测试机上安装一遍redis,最好使用utils下面的install_server.sh安装服务,然后将redis的配置文件和init需要的 ...
- Echart显示后端mysql数据
一.基本思想 1.将数据存储在mysql数据库中 2.后端链接数据库,将数据库中的数据保存为json格式 3.将json格式数据使用ajax传到前端JSP页面中的Echarts 二.实现的关键点 1. ...
- 使用WtmPlus低代码平台提高生产力
低代码平台的概念很火爆,产品也是鱼龙混杂. 对于开发人员来说,在使用绝大部分低代码平台的时候都会遇到一个致命的问题:我在上面做的项目无法得到源码,完全黑盒.一旦我的需求平台满足不了,那就是无解. ...
- 【Reverse】每日必逆0x03
BUU-刮开有奖 附件:https://files.buuoj.cn/files/abe6e2152471e1e1cbd9e5c0cae95d29/8f80610b-8701-4c7f-ad60-63 ...
- Java SSLSocket
Java SSLSocket JSSE(Java Security Socket Extension)是Sun公司为了解决互联网信息安全传输提出的一个解决方案,它实现了SSL和TSL协议,包含了数据加 ...
- 深入理解java动态代理机制
动态代理其实就是java.lang.reflect.Proxy类动态的根据您指定的所有接口生成一个class byte,该class会继承Proxy类,并实现所有你指定的接口(您在参数中传入的接口数组 ...
- Docker 安装 Oracle12c
为选定需要pull到系统中的数据库镜像 # docker pull sath89/oracle-12c --------sath89/oracle-12c为选定需要pull到系统中的数据库镜像 doc ...
- Java Timestamp 类的使用
很简单,我们可以这样声明 Timestamp ts=new Timestamp(new Date().getTime());这样我们就可以得到时间比较具体的一个类型转换!!! 在开发web应用中,针对 ...