目录

Hron K, Menafoglio A, Templ M, et al. Simplicial principal component analysis for density functions in Bayes spaces[J]. Computational Statistics & Data Analysis, 2016: 330-350.

问题

我们知道一般的PCA,其数据是\(x \in \mathbb{R}^n\)的,事实上,已经有很多关于函数类数据的PCA了.

一般的函数型PCA是定义在\(L^2\)空间上的. 假设\(x_1, x_2, \ldots, x_N \in L^2(I)\), 并假设是中心化的. 我们希望找到一个\(\xi\)最大化:

\[\frac{1}{N} \sum_{i=1}^N \langle x_i, \xi \rangle_2^2, \mathrm{s.t.} \: \|\xi\|_2=1.
\]

其中\(\langle x, y \rangle=\int_I xy \: \mathrm{d}t\).

假设:

\[\xi = \sum_{i=1}^N v_i x_i.
\]

并记:

\[M \in \mathbb{R}^{N \times N}, M_{i,j}=\langle x_i, y_j \rangle_2
\]

则最初的式子可以表示为:

\[\frac{1}{N} v^TM^TMv, \quad \mathrm{s.t.} \: \|Xv\|_2=1.
\]

可以证明,KKT条件为:

\[M^2v=\lambda Mv
\]

显然,\(v\)是\(M\)的首特征向量(当然\(\|v\|=1\)不一定成立).

类似的,其它的载荷向量也是如此求得. 上面有一点存疑的地方是:

\[\xi = \sum_{i=1}^N v_i x_i.
\]

在\(\mathbb{R}^n\)中是绝对没问题的是,问题是在\(L^2\),是否可以分解一个元素呢? 可以的,绝对是可以的.

作者是将一般的函数的PCA,限定在密度函数的PCA,我们知道,密度函数\(f\)满足:

\[f \ge 0, \\
\int_If\mathrm{d}t=1.
\]

显然\(\xi = \sum_{i=1}^N v_i x_i\)并不一定能够满足上面的性质,为此,作者引入了一个新的贝叶斯空间\(\mathcal{B}^2(I)\).

\(\mathcal{B}^2(I)\)

假设\(I=[a,b]\),我们的工作是构造一个空间,使得上面的元素其线性运算能够保持密度函数的性质.

首先说明,\(\mathcal{B}^2(I)\)里的元素为\(\{f|\int_I f(t) \mathrm{d}t=1, f\ge 0, t\in I\}\).

记\(\eta=b-a\),后续我们会发现,\(1/\eta\)是这个空间的零元素.

首先定义加法和数乘法,使其称为一个向量空间.

\[(f \oplus g) (t)=\frac{f(t)g(t)}{\int_If(s)g(s) \mathrm{d}s}, \quad t \in I,
\]

可以发现\(\oplus\)是保持密度函数的性质的(只要\(f,g\)在\(I\)上满足).

\[(\alpha \odot f)(t)=\frac{f(t)^{\alpha}}{\int_I f(s)^{\alpha} \mathrm{d}s}, \quad t \in I,
\]

显然也是保持的.

并且,容易证明(利用类似核方法的思想):

\[f \oplus g = g \oplus f, \\
f \oplus g \oplus h=f \oplus (g \oplus h), \\
\alpha \odot (f \oplus g) = (\alpha \odot f) \oplus (\alpha \odot g), \\
(\alpha \cdot \beta) \odot f= \alpha \odot (\beta \odot f), \\
(\alpha + \beta) \odot f= (\alpha \odot f) \oplus (\beta \odot f).
\]

注意到:

令\(g(t)=1/\eta, t\in I\)

\[f \oplus g=f, \quad 0 \odot f = \frac{1}{\eta}
\]

所以\(1/\eta\)是零元素,那么可以如此定义差:

\[f \ominus g= f \oplus [(-1) \odot g],
\]

易得:

\[f \ominus f= 1 /\eta.
\]

再定义内积,使其成为一个内积空间:

\[\langle f, g \rangle_{\mathcal{B}} = \frac{1}{2\eta} \int_I \int_I \ln \frac{f(t)}{f(s)} \ln \frac{g(t)}{g(s)} \mathrm{d}t \mathrm{d}s, \quad, f, g \in \mathcal{B}^2(I).
\]

则,我们可以定义其上的范数为:

\[\|f\|_{\mathcal{B}} = [\frac{1}{2\eta} \int_I \int_I \ln^2 \frac{f(t)}{f(s)} \mathrm{d}{t} \mathrm{d}s]^{1/2}.
\]

下证其为一范数:

非负性是显然的, 首先证明其是正定的,即,零元素的大小为0:

\[\|1/\eta\|_{\mathcal{B}} = [\frac{1}{2\eta} \int_I \int_I \ln^2 1 \mathrm{d}{t} \mathrm{d}s]^{1/2}=0.
\]

其次,证明其是其次的,即\(\|\alpha \odot f\|_{\mathcal{B}}=|\alpha|\|f\|_{\mathcal{B}}\):

\[\|\alpha \odot f\|_{\mathcal{B}} = [\frac{1}{2\eta} \int_I \int_I \ln^2 \frac{f^{\alpha}(t)}{f^{\alpha}(s)} \mathrm{d}{t} \mathrm{d}s]^{1/2} = |\alpha|[\frac{1}{2\eta} \int_I \int_I \ln^2 \frac{f(t)}{f(s)} \mathrm{d}{t} \mathrm{d}s]^{1/2} = |\alpha|\|f\|_{\mathcal{B}}.
\]

最后证其满足三角不等式:

\[\begin{array}{ll}
\|f \oplus g\|_{\mathcal{B}}&=[\frac{1}{2 \eta}\int_I \int_I \ln^2 \frac{f(t)g(t)}{f(s)g(s)}\mathrm{d}t \mathrm{d}s]^{1/2} = [\frac{1}{2 \eta}\int_I \int_I \ln^2 \frac{f(t)g(t)}{f(s)g(s)}\mathrm{d}t \mathrm{d}s]^{1/2}\\
&= [\frac{1}{2 \eta}\int_I \int_I \ln^2 \frac{f(t)}{f(s)}\mathrm{d}t \mathrm{d}s + \frac{1}{2 \eta}\int_I \int_I \ln^2 \frac{g(t)}{g(s)}\mathrm{d}t \mathrm{d}s]^{1/2} \\
& \le [\frac{1}{2 \eta}\int_I \int_I \ln^2 \frac{f(t)}{f(s)}\mathrm{d}t \mathrm{d}s]^{1/2} + [\frac{1}{2 \eta}\int_I \int_I \ln^2 \frac{g(t)}{g(s)}\mathrm{d}t \mathrm{d}s]^{1/2} \\
&= \|f\|_{\mathcal{B}}+\|g\|_{\mathcal{B}}.
\end{array}
\]

证毕.

定义一个\(\mathcal{B}^2(I) \rightarrow L^2(I)\)上的函数:

\[\mathrm{clr} (f)(t) = f_c(t) = \ln f(t) - \frac{1}{\eta} \int_I \ln f(s) \mathrm{d}s.
\]

为什么要定义一个这样的函数等等再讲,先来看看它的性质——不仅仅是等距映射.

\[\mathrm{clr} (f \oplus g)(t)=f_c(t)+g_c(t), \quad \mathrm{clr} (\alpha \odot f)(t) =\alpha \cdot f_c(t), \quad \langle f, g \rangle_{\mathcal{B}}=\langle f_c, g_c \rangle_2=\int_I f_c(t) g_c(t) \mathrm{d}t.
\]

这些性质的证明是容易的.

还需要注意的一个性质,不应该称之为限制条件才对:

\[\int_I f_c \mathrm{d}t=\int_I \ln f(t) \mathrm{d}t - \int_I \ln f(s) \mathrm{d}s=0.
\]

这就意味着,只有\(L^2(I)\)中满足积分为0的函数才能在\(\mathcal{B}^2(I)\)中有原像.

接下来解释为什么要弄这样一个映射. 因为一般情况下,我们首先面对的都是一些离散的数据,然后利用某些方法进行拟合,比如论文中提到的\(B-\)样条,但是拟合出来的函数往往并不是密度函数,所以便有了\(\mathrm{clr}\)变化,这个变化可以帮助我们有效利用已有的函数,利用已有函数的积分等性质来应对\(\mathcal{B}^2(I)\)中的一些计算.

当然这也给函数逼近增加了难度,就是在区间\(I\)上积分和需要为1,这个问题在另一篇文章中进行了详细的讨论.

\(\mathcal{B}^2(I)\)上的PCA

假设\(x_i, i=1,2,\ldots, N\in \mathcal{B}^2(I)\), 那么令:

\[\xi = \sum_{i=1}^N v_i \odot x_i = (v_1 \odot x_1) \oplus (v_2 \odot x_2) \oplus \cdots \oplus (v_N \odot x_N).
\]

令矩阵\(M\)其元素\(M_{ij}=\langle x_i, x_j \rangle_{\mathcal{B}}= \langle \mathrm{clr}(x_i), \mathrm{clr}(x_J) \rangle_2\). 则有类似的公式:

\[M^2v = \lambda Mv, \|Xv\|_{\mathcal{B}}=1.
\]

转化为\(L^2(I)\)上的PCA是类似的:

\[\mathrm{clr}(\xi) = \sum_i^N v_i\mathrm{clr}(x_i),
\]
\[M^2v = \lambda Mv, \|\mathrm{clr}(\xi)\|_2=1.
\]

在实际情况中\(\mathrm{clr}(x_i)\)是通过函数逼近得到的,假设为:

\[\mathrm{clr}(x_i)=\Phi c_i, \Phi=[\phi_1, \ldots, \phi_K].
\]

\[\mathrm{clr}(X)=\Phi C,
\]

假设\(M'_{ij} = \langle \phi_i, \phi_j \rangle_2\), 则:

\[M = C^TM'C
\]

\[\mathrm{clr}(\xi) = \Phi Cv
\]

令\(b = Cv\), 可得:

\[Mv = C^T\Phi^T \Phi Cv = C^T\Phi^T \Phi b = \lambda v,
\]

两边同乘以\(C\)可得:

\[CC^T \Phi^T \Phi b = \lambda b
\]

解得\(b\), 可知:

\[\mathrm{clr}(\xi) = \Phi b \Rightarrow \xi = \mathrm{clr}^{-1}(\Phi b).
\]

注意: \(\int_I \mathrm{clr}(x_i) \mathrm{d}t=0.\)

Simplicial principal component analysis for density functions in Bayes spaces的更多相关文章

  1. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  2. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  3. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  4. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  5. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  6. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

  7. (4)主成分分析Principal Component Analysis——PCA

    主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...

  8. Principal Component Analysis ---- PRML读书笔记

    To summarize, principal component analysis involves evaluating the mean x and the covariance matrix ...

  9. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

随机推荐

  1. RTSP, RTP, RTCP, RTMP傻傻分不清?

    RTSP基于TCP传输请求和响应报文,RTP基于UDP传输流媒体数据,RTCP基于UDP传送传输质量信息(如丢包和延迟). 比如喀什一个局域网内10个人同时点播广州的同一个源,喀什和广州之间就要传10 ...

  2. UBI 文件系统之分区挂载

    Linux 系统中有关mtd和ubi的接口:(1) cat /proc/mtd:可以看到当前系统的各个mtd情况,(2) cat /proc/partitions: 分区信息,有上面的类似(3) ca ...

  3. Vue相关,Vue JSX

    JSX简介 JSX是一种Javascript的语法扩展,JSX = Javascript + XML,即在Javascript里面写XML,因为JSX的这个特性,所以他即具备了Javascript的灵 ...

  4. 隐藏状态栏后tableview自动上移20个像素的问题

    最近在开发过程中碰到一个很奇怪的问题,将状态栏隐藏掉之后,页面上的tableView会自动上移20个像素. 这是因为在iOS7.0之后,系统会自动调整scrollView的layout 和 conte ...

  5. Linux基础命令---mailq显示邮件队列

    mailq mailq指令可以显示出待发送的邮件队列. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法       mailq   2.选项参数列表 ...

  6. java设计模式—Decorator装饰者模式

    一.装饰者模式 1.定义及作用 该模式以对客户端透明的方式扩展对象的功能. 2.涉及角色      抽象构件角色:定义一个抽象接口,来规范准备附加功能的类. 具体构件角色:将要被附加功能的类,实现抽象 ...

  7. Spring事务隔离级别和传播特性(转)

    相信每个人都被问过无数次Spring声明式事务的隔离级别和传播机制吧!今天我也来说说这两个东西. 加入一个小插曲,一天电话里有人问我声明式事务隔离级别有哪几种,我就回答了7种,他问我Spring的版本 ...

  8. 密码学之Hash散列

    一.简介 hash(散列.杂凑)函数,是将任意长度的数据映射到有限长度的域上. 直观解释起来,就是对一串数据m进行杂糅,输出另一段固定长度的数据h,作为这段数据的特征(指纹).也就是说,无论数据块m有 ...

  9. 华为HMS Core图形引擎服务携手三七游戏打造移动端实时DDGI技术

    在2021年HDC大会的主题演讲中提到,华为HMS Core图形引擎服务(Scene Kit)正协同三七游戏一起打造实时DDGI(动态漫反射全局光照:Dynamic Diffuse Global Il ...

  10. [BUUCTF]PWN——mrctf2020_easyoverflow

    mrctf2020_easyoverflow 附件 步骤: 例行检查,64位程序,保护全开 本地试运行的时候就直接一个输入,然后就没了,直接用64位ida打开 只要满足18行的条件,就能够获取shel ...