目录

Lam R, Willcox K, Wolpert D H, et al. Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach[C]. neural information processing systems, 2016: 883-891.

@article{lam2016bayesian,

title={Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach},

author={Lam, Remi and Willcox, Karen and Wolpert, David H},

pages={883--891},

year={2016}}

贝叶斯优化中的多步优化策略. 像经典的EI方法, 就是只考虑一步, 即希望找到

\[r(\mathcal{S}_k, x_{k+1},f_{k+1})=\max \{0, f_{min}^{\mathcal{S}_k}-f_{k+1}\}
\]

的期望收益最大化的点\(x_{k+1}\)为下一个评估点.

上式中的\(f_{min}^{\mathcal{S}_k}\)是指目标函数在集合\(\mathcal{S}_k\)上的最小值.

主要内容

考虑如下动态规划, 第k步的

状态: \(\mathcal{S}_k\), 即观测到的点;

控制: \(u_k\), 且\(u_k(\mathcal{S}_k)=x_{k+1}\)

扰动: \(w_k:=f_{k+1} \sim p(f(x_{k+1})|\mathcal{S}_k)\);

设状态转移为:

\[\mathcal{S}_{k+1} = \mathcal{F}_k (\mathcal{S}_{k}, x_{k+1}, f_{k+1}) = \mathcal{S}_{k}\cup \{(x_{k+1}, f_{k+1})\}.
\]

收益(效用函数):

\[U_k(x_{k+1}; \mathcal{S} _k) = \mathbb{E}_{w_k}[r_k(\mathcal{S}_k, x_{k+1}, f_{k+1})+J_{k+1}(\mathcal{F}_k (\mathcal{S}_{k}, x_{k+1}, f_{k+1}))], \\
J_k(x_{k+1}) = \max_{x_{k+1}} U_k,\\
J_N=r_N(x_{N+1}).
\]

很自然的想法是, 我们最大化\(U_1\), 来获得所需的评估点, 但是问题是, 这个是一个嵌套的最大化优化问题, 不易求解.

本文采用rollout 算法来估计\(U_k\), 具体如下:

给定基本的决策控制\(\pi = (\pi_1, \ldots, \pi_N)\)(比如最大化EI), 为了最优化\(U_k\), 我们先选择用\(H_{k+1}\)估计\(J_{k+1}\), 其定义如下:



其中\(n \in \{k+1, \ldots, N-1\}\), \(\gamma \in [0, 1]\) 用以调节增量.

\(H_n\)是一个期望, 可以用Gauss-Hermite正交化估计:

其中\(\tilde{N} = \min \{k+h, N\}\), 用以限制最大的估计步数, \(\alpha^{(q)}\)是正交系数, \(f_{n+1}^{(q)}\)是Hermite多项式的根(大概).

于是, \(U_k(x_{k+1},\mathcal{S}_k)\)便可用下式估计:



算法如下:

Input: \(h, \gamma, N, \mathcal{S}_1\);

repeat N:

  • 根据(20)近似最大化\(U_k\)
  • 更新\(\mathcal{S}_{k+1}=\mathcal{S}_k \cup \{(x_{k+1},f_{k+1})\}\)

out: \(f_{min}^{S_{N+1}}\).

Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach的更多相关文章

  1. 【转载】AutoML--超参数调优之Bayesian Optimization

    原文:Auto Machine Learning笔记 - Bayesian Optimization 优化器是机器学习中很重要的一个环节.当确定损失函数时,你需要一个优化器使损失函数的参数能够快速有效 ...

  2. 贝叶斯优化(Bayesian Optimization)深入理解

    目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search.Random Search以及贝叶斯优化搜索.前两 ...

  3. Bayesian Optimization使用Hyperopt进行参数调优

    超参数优化 Bayesian Optimization使用Hyperopt进行参数调优 1. 前言 本文将介绍一种快速有效的方法用于实现机器学习模型的调参.有两种常用的调参方法:网格搜索和随机搜索.每 ...

  4. 贝叶斯优化 Bayesian Optimization

    贝叶斯优化 Bayesian Optimization 2018年07月02日 22:28:06 余生最年轻 阅读数 4821更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4 ...

  5. PP: Taking the human out of the loop: A review of bayesian optimization

    Problem: Design problem parameters consist of the search space of your model. Scientists design expe ...

  6. 贝叶斯优化(Bayesian Optimization)只需要看这一篇就够了,算法到python实现

    贝叶斯优化 (BayesianOptimization) 1 问题提出 神经网咯是有许多超参数决定的,例如网络深度,学习率,正则等等.如何寻找最好的超参数组合,是一个老人靠经验,新人靠运气的任务. 穷 ...

  7. [Optimization] Dynamic programming

    “就是迭代,被众人说得这么玄乎" “之所以归为优化,是因为动态规划本质是一个systemetic bruce force" “因为systemetic,所以比穷举好了许多,就认为是 ...

  8. [Optimization] Advanced Dynamic programming

    这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...

  9. [Algorithm] Meeting hour optimization (Kanpsack problem) and Dynamic programming

    For example we have array of meeting objects: const data = [ { name: }, { name: }, { name: }, { name ...

随机推荐

  1. 【风控算法】一、变量分箱、WOE和IV值计算

    一.变量分箱 变量分箱常见于逻辑回归评分卡的制作中,在入模前,需要对原始变量值通过分箱映射成woe值.举例来说,如"年龄"这一变量,我们需要找到合适的切分点,将连续的年龄打散到不同 ...

  2. A Child's History of England.51

    CHAPTER 14 ENGLAND UNDER KING JOHN, CALLED LACKLAND At two-and-thirty years of age, John became King ...

  3. ubuntu18.10搜狗输入法的安装

    记录一下 1.卸载ibus ubuntu默认使用ibus管理输入法,官方推荐使用fcitx.我们先卸载ibus sudo apt-get remove ibus 清除ibus配置,如果没有设置 sud ...

  4. 关于form表单提交ajaxForm和ajaxSubmit的用法与区别

    前几天在学习form表单提交时看到这两种方法,这两种方法都是实现form的ajax提交的方法,看了很多资料还是不太明白其用法和区别,最后直接自己写demo,很快就理解,所以说实操是学习的最快捷直接的途 ...

  5. 【Python】【Basic】【数据类型】基本数据类型

    1.数字 int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位系统上,整数的位数为64位,取值范围为-2 ...

  6. Private Destructor

    Predict the output of following programs. 1 #include <iostream> 2 using namespace std; 3 4 cla ...

  7. 【Python】【Module】time

    #_*_coding:utf-8_*_ __author__ = 'Alex Li' import time # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了 ...

  8. 【Java基础】HashMap原理详解

    哈希表(hash table) 也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,本文会对java集合框架中Has ...

  9. 【Matlab】线性调频信号LFM 仿真

    [知识点] 生成序列 i = a:step:b 举例: i = 1:1:9 画图(子图) subplot(m,n,p)或者subplot(m n p) 总结起来就是,画一个m行n列的图. p表示在第p ...

  10. Redis集群环境各节点无法互相发现与Hash槽分配异常 CLUSTERDOWN Hash slot not served的解决方式

    总结/朱季谦 在搭建Redis5.x版本的集群环境曾出现各节点无法互相发现与Hash槽分配异常 CLUSTERDOWN Hash slot not served的情况,故而把解决方式记录下来. 在以下 ...