Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized Smoothing. International Conference on Machine Learning (ICML), 2019.

@article{cohen2019certified,

title={Certified Adversarial Robustness via Randomized Smoothing},

author={Cohen, Jeremy and Rosenfeld, Elan and Kolter, J Zico},

pages={1310--1320},

year={2019}}

Certified robustness 区别于一般的启发式的防御, 其在样本\(x\)满足一定的条件下(往往是一个类似于置信度的保证), 可以证明在某个范数球(往往是\(\ell_2\), 正如本文)内能够免疫攻击, 即

\[g(x+\epsilon)=g(x):=\arg \max_{c \in \mathcal{Y}} \: z(x), \forall \epsilon \in \mathcal{B}(x;R).
\]

这些方法给出了一种不同于adversarial training的思路, 虽然到目前为止, 这些方法往往局限于\(\ell_1, \ell_2\)攻击, 在更为常见的\(\ell_{\infty}\)的表现并不是特别好.

主要内容

方法很简单, 训练的时候:

  • Given inputs \(x_i\),
  • Generate gaussian noise \(\epsilon_i \sim \mathcal{N}(0, \sigma^2)\);
  • Use \(x_i+\epsilon_i\) to train.

实际上这个训练过程, 不从后面的理论的角度看, 可以把它和adversarial training做类比, 实际上都是一种在样本点周围试探性的训练过程. 大概这样子会让整个的loss landscape更加光滑?

测试的时候就不同了, 首先需要认为地设定一个采样次数\(n\),

  • Given input \(x\)
  • Generate \(n\) gaussian noise \(\epsilon_i, i=1, \ldots, n\).
  • For each \(x+\epsilon_i\), the neural network will give a prediction label \(c_i\);
  • Count the prediction labels and find the most frequent one, denoted by \(c\).

则\(c\)就是最终的预测是输出, 简而言之, 就是在预测的时候需要统计频率, 这个实际上是寻找最大概率点.

定理1

定理1: 假设\(f:\mathbb{R}^d \rightarrow \mathcal{Y}\) 为一个任意的确定性或者随机的函数, \(\epsilon \sim \mathcal{N}(0, \sigma^2I)\). 定义\(g\)为

\[\tag{1}
g(x):= \arg \max_{c \in \mathcal{Y}} \mathbb{P}(f(x+\epsilon)=c).
\]

假设\(c_A \in \mathcal{Y}\)且\(\underline{p_A}, \overline{p_B} \in [0, 1]\)满足

\[\tag{2}
\mathbb{P}(f(x+\epsilon)=c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \not = c_{A}} \mathbb{P}(f(x+\epsilon)=c).
\]

则\(g(x+\delta)=c_A\) 对于任意的\(\|\delta\|_2 < R\), 其中

\[\tag{3}
R=\frac{\sigma}{2}(\Phi^{-1}(\underline{p_A})- \Phi^{-1}(\overline{p_B})).
\]

定理1总结来说就是, 当你的\(f(x+\epsilon)=c_A\)的概率比别的类别的概率大得多的时候, 由(1)式所得到的smooth版分类器\(g\)就能够在某个半径内免疫\(\ell_2\)攻击.

但是需要注意的是, 普通的CNN的训练过程可以保证置信度很高但没法保证(2), 所以为了让(2)式成立这才有了上面的一个训练过程, 其中实际上有一个逼近的过程(虽然感觉有一点牵强):

测试过程中统计频率的行为也得到了解释, 实际上就是为了估计最大概率. 最后, 在作者的代码中, 或者说算法中, 测试的predict可能有点麻烦, 实际上这是作者引入了假设检验, 意图大概是为了有些时候没法判断到底哪个对干脆就不判断来保证安全(测试的时候感觉是没有必要的). 当然了, 在certify accuracy的估计中, \(\alpha\)就是相当有必要了.

代码

原作者代码.

Certified Adversarial Robustness via Randomized Smoothing的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

    目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...

  4. Second Order Optimization for Adversarial Robustness and Interpretability

    目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...

  5. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. Glossary Collection

    目录 直接修饰用 间接强调用 (多为副词) 过渡用 特别的名词 动词 词组 各种介词 句子 摘要 引言 总结 正文 实验 直接修饰用 Word 含义 例句 近义词 nuanced adj. 微妙的:具 ...

  9. Competing in a data science contest without reading the data

    Competing in a data science contest without reading the data Machine learning competitions have beco ...

随机推荐

  1. 学习java 7.3

    学习内容:定义类不需要加static 成员方法在多个对象时是可以共用的,而成员变量不可以共用,多个对象指向一个内存时,改变变量的值,对象所在的类中的变量都会改变 成员变量前加private,成员方法前 ...

  2. Docker快速上手入门

    Docker 什么是Docker? Docker就是一种虚拟化的技术 可以通过Docker快速的下载使用第三方技术,方便搭建环境 目的:Securely build,share and run any ...

  3. proguard 混淆工具的用法 (适用于初学者参考)

    一. ProGuard简介 附:proGuard官网 因为Java代码是非常容易反编码的,况且Android开发的应用程序是用Java代码写的,为了很好的保护Java源代码,我们需要对编译好后的cla ...

  4. linux 6.5 网卡

    启动网卡 ifup eth0 eth0:网卡名称 设置网卡开机启动 vi /etc/sysconfig/network-scripts/ifcfg-eth0 ONBOOT=yes

  5. Advanced C++ | Conversion Operators

    In C++, the programmer abstracts real world objects using classes as concrete types. Sometimes it is ...

  6. jstl中的foreach标签

    <%@ page import="java.util.ArrayList" %><%@ page import="java.util.List" ...

  7. ios导出ipa文件

    步骤1:选择运行设备,IOS Device 步骤2:选择Product ---  Archive开始编译(注意第一步一定要选IOS Device,否则此步Archive为灰sè无法操作) 步骤3:一段 ...

  8. ciscn_2019_s_4***(栈迁移)

    这是十分经典的栈迁移题目 拿到题目例行检查 32位程序开启了nx保护 进入ida,发现了很明显的system 我们进入main函数查看vul 可以看到溢出的部分不够我们rop所以这道题通过栈迁移去做 ...

  9. bjdctf_2020_router

    这道题其实主要考linux下的命令.我们来试一下!!! 可以看到,只要我们在命令之间加上分号,就可以既执行前面的命令,又执行后面的命令... 这道题就不看保护了,直接看一下关键的代码. 这里可以看到s ...

  10. sublime打开中文文件乱码以及打开文件出现.dump

    一.中文乱码 原因:中文文件由gbk编码,刚安装的sublime不支持转码 解决方法:调用ctrl+shift+p,输入:install package,回车,在稍后弹出的安装包框中搜索:Conver ...