Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized Smoothing. International Conference on Machine Learning (ICML), 2019.

@article{cohen2019certified,

title={Certified Adversarial Robustness via Randomized Smoothing},

author={Cohen, Jeremy and Rosenfeld, Elan and Kolter, J Zico},

pages={1310--1320},

year={2019}}

Certified robustness 区别于一般的启发式的防御, 其在样本\(x\)满足一定的条件下(往往是一个类似于置信度的保证), 可以证明在某个范数球(往往是\(\ell_2\), 正如本文)内能够免疫攻击, 即

\[g(x+\epsilon)=g(x):=\arg \max_{c \in \mathcal{Y}} \: z(x), \forall \epsilon \in \mathcal{B}(x;R).
\]

这些方法给出了一种不同于adversarial training的思路, 虽然到目前为止, 这些方法往往局限于\(\ell_1, \ell_2\)攻击, 在更为常见的\(\ell_{\infty}\)的表现并不是特别好.

主要内容

方法很简单, 训练的时候:

  • Given inputs \(x_i\),
  • Generate gaussian noise \(\epsilon_i \sim \mathcal{N}(0, \sigma^2)\);
  • Use \(x_i+\epsilon_i\) to train.

实际上这个训练过程, 不从后面的理论的角度看, 可以把它和adversarial training做类比, 实际上都是一种在样本点周围试探性的训练过程. 大概这样子会让整个的loss landscape更加光滑?

测试的时候就不同了, 首先需要认为地设定一个采样次数\(n\),

  • Given input \(x\)
  • Generate \(n\) gaussian noise \(\epsilon_i, i=1, \ldots, n\).
  • For each \(x+\epsilon_i\), the neural network will give a prediction label \(c_i\);
  • Count the prediction labels and find the most frequent one, denoted by \(c\).

则\(c\)就是最终的预测是输出, 简而言之, 就是在预测的时候需要统计频率, 这个实际上是寻找最大概率点.

定理1

定理1: 假设\(f:\mathbb{R}^d \rightarrow \mathcal{Y}\) 为一个任意的确定性或者随机的函数, \(\epsilon \sim \mathcal{N}(0, \sigma^2I)\). 定义\(g\)为

\[\tag{1}
g(x):= \arg \max_{c \in \mathcal{Y}} \mathbb{P}(f(x+\epsilon)=c).
\]

假设\(c_A \in \mathcal{Y}\)且\(\underline{p_A}, \overline{p_B} \in [0, 1]\)满足

\[\tag{2}
\mathbb{P}(f(x+\epsilon)=c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \not = c_{A}} \mathbb{P}(f(x+\epsilon)=c).
\]

则\(g(x+\delta)=c_A\) 对于任意的\(\|\delta\|_2 < R\), 其中

\[\tag{3}
R=\frac{\sigma}{2}(\Phi^{-1}(\underline{p_A})- \Phi^{-1}(\overline{p_B})).
\]

定理1总结来说就是, 当你的\(f(x+\epsilon)=c_A\)的概率比别的类别的概率大得多的时候, 由(1)式所得到的smooth版分类器\(g\)就能够在某个半径内免疫\(\ell_2\)攻击.

但是需要注意的是, 普通的CNN的训练过程可以保证置信度很高但没法保证(2), 所以为了让(2)式成立这才有了上面的一个训练过程, 其中实际上有一个逼近的过程(虽然感觉有一点牵强):

测试过程中统计频率的行为也得到了解释, 实际上就是为了估计最大概率. 最后, 在作者的代码中, 或者说算法中, 测试的predict可能有点麻烦, 实际上这是作者引入了假设检验, 意图大概是为了有些时候没法判断到底哪个对干脆就不判断来保证安全(测试的时候感觉是没有必要的). 当然了, 在certify accuracy的估计中, \(\alpha\)就是相当有必要了.

代码

原作者代码.

Certified Adversarial Robustness via Randomized Smoothing的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

    目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...

  4. Second Order Optimization for Adversarial Robustness and Interpretability

    目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...

  5. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. Glossary Collection

    目录 直接修饰用 间接强调用 (多为副词) 过渡用 特别的名词 动词 词组 各种介词 句子 摘要 引言 总结 正文 实验 直接修饰用 Word 含义 例句 近义词 nuanced adj. 微妙的:具 ...

  9. Competing in a data science contest without reading the data

    Competing in a data science contest without reading the data Machine learning competitions have beco ...

随机推荐

  1. 日常Javaweb 2021/11/19

    Javaweb Dao层: //连接数据库,实现增查功能 package dao; import java.sql.Connection; import java.sql.DriverManager; ...

  2. 浅讲.Net 6 之 WebApplicationBuilder

    介绍 .Net 6为我们带来的一种全新的引导程序启动的方式.与之前的拆分成Program.cs和Startup不同,整个引导启动代码都在Program.cs中. WebApplicationBuild ...

  3. 零基础学习java------36---------xml,MyBatis,入门程序,CURD练习(#{}和${}区别,模糊查询,添加本地约束文件) 全局配置文件中常用属性 动态Sql(掌握)

    一. xml  1. 文档的声明 2. 文档的约束,规定了当前文件中有的标签(属性),并且规定了标签层级关系 其叫html文档而言,语法要求更严格,标签成对出现(不是的话会报错) 3. 作用:数据格式 ...

  4. Ecshop 安装

    参考 http://www.68ecshop.com/article-617.html ecshop的安装第一步:下载ecshop网店系统正式版安装包 我们可以来ecshop开发中心的官网(www.6 ...

  5. android studio 使用 aidl(一)基础用法

    最近公司需要开发一个项目用的到aidl,之前研究过eclipse版本的,但是好久了一直没用,现在需要捡起来,但是现在都用android studio了,所以查了下资料 都不是很全,我在这里总结一下,方 ...

  6. Java Timestamp 类的使用

    很简单,我们可以这样声明 Timestamp ts=new Timestamp(new Date().getTime());这样我们就可以得到时间比较具体的一个类型转换!!! 在开发web应用中,针对 ...

  7. jstl中的if标签

    <%@ page import="java.util.ArrayList" %><%@ page import="java.util.List" ...

  8. java输入/输出流的基本知识

    通过流可以读写文件,流是一组有序列的数据序列,以先进先出方式发送信息的通道. 输入/输出流抽象类有两种:InputStream/OutputStream字节输入流和Reader/Writer字符输入流 ...

  9. vs2019+windows服务+nancy+打包

    一.创建windows服务  二.nuget包添加nancy 1.nancy 2.0.0和Nancy.Hosting.Self 2.0.0插件 2.项目添加文件夹Modules,在Modules文件夹 ...

  10. 自定义 UITableViewCell 的 accessory 样式

    对于 UITableViewCell 而言,其 accessoryType属性有4种取值: UITableViewCellAccessoryNone, UITableViewCellAccessory ...