Codeforces 1500F - Cupboards Jumps(set)
nb tea!!!111
首先很显然的一件事是对于三个数 \(a,b,c\),其最大值与最小值的差就是三个数之间两两绝对值的较大值,即 \(\max(|a-b|,|b-c|,|c-a|)\),因此我们不妨从差分序列的角度解决这个问题。对于原序列 \(h\),我们假设其差分序列 \(d_i=h_{i+1}-h_i\),那么 \(\max(h_i,h_{i+1},h_{i+2})-\min(h_i,h_{i+1},h_{i+2})=\max(|h_{i+1}-h_{i}|,|h_{i+2}-h_{i+1}|,|h_{i+2}-h_i|)\),又 \(h_{i+2}-h_i=d_i+d_{i+1}\),因此我们可以得到 \(w_i=\max(|d_i|,|d_{i+1}|,|d_i+d_{i+1}|)\)
思考到这里我们就能够想出一个非常 naive 的 DP,\(dp_{i,x}\) 表示考虑到前 \(i\) 个数,\(|d_i|=x\) 是否可行,转移就枚举下一个数 \(d_{i+1}=y\),那么 \(dp_{i,x}\) 能转移到 \(dp_{i+1,y}\) 的充要条件是 \(x=w_i\lor y=w_i\lor x+y=w_i\) 且 \(x,y\le w_i\),这样暴力 DP 是 \(\mathcal O(nC^2)\) 的,不知道能拿多少分(大雾)。考虑进行一点点优化,注意到我们 \(dp_{i,x}=1\) 的 \(x\) 肯定是成段分布的对吧,因此我们考虑每一段在转移前后会变成什么,我们假设考虑到 \(i\) 时,满足 \(dp_{i,x}=1\) 的 \(x\) 组成的集合为 \(S\),那么:
- 如果 \(w_i\in S\),那么 \(\forall y\in[0,w_i]\) 均有 \(dp_{i+1,y}=1\),具体方案就是令 \(d_i=w_i,d_{i+1}=-y\)。
- 如果到现在还没有判定出无解,也即 \(\exists x\in S,s.t.x<w_i\)(因为 \(>w_i\) 肯定不合法,并且由于该情况不同于上一种情况所以 \(w_i\notin S\)),那么有 \(dp_{i+1,w_i-x}=1\),具体方案就是 \(d_i=x,d_{i+1}=w_i-x\),同时也有 \(dp_{i+1,w_i}=1\),具体方案就是 \(d_i=-x,d_{i+1}=w_i\)。也就是说如果 \(w_i\notin S\),那么所有点都会变为 \(w_i-x\),同时加入一个新点 \(w_i\)
因此如果我们维护这些连续段组成的集合,那么每次可以暴力 \(\mathcal O(n)\) 转移每个连续段,因此我们复杂度就降到了 \(\mathcal O(n^2)\)(虽然还是一脸过不去的亚子)
考虑进一步优化,我们注意到这个过程很特别,因为每次如果 \(w_i\notin S\),那么新增进来的肯定是一个个单点,而区间自始至终都只有一个,也就是说我们可以不考虑一一反转这个单点,而是翻转整个数轴,也就是说我们开一个 set
维护这些单点在最一开始的数轴上的位置,然后维护两个值 \(L,R\) 表示当前区间的两个端点在最一开始的数轴上的位置,然后每次检验现在坐标为 \(w_i\) 的位置在最一开始的数轴上的位置是否属于这个集合与区间的并,如果属于则说明 \(x\in S\),那么我们就把数轴还原成一开始的样子,把 set
清空并把区间最右端点设为 \(0\) 和 \(w_i\),否则我们就记录一下区间是否被翻转,即 \(+x\) 方向是否已经变为 \(-x\),记这个标记为 \(flg\),以及数轴的偏移量 \(dlt\),那么我们就设 \(flg:=1-flg,dlt:=w_i-dlt\),然后把 \(w_i\) 加入集合。如果某一步 \(L\) 在现在数轴上对应的位置 \(>R\) 在现在数轴上对应的位置且 \(S=\varnothing\) 那么无解。
接下来考虑怎样找出合法的方案,我们不妨首先找出任意一个 \(c_i\in S\),其中 \(S\) 表示扫描到第 \(i\) 步时合法的 \(x\) 组成的集合,那么我们考虑这样构造出 \(|d_i|\),从最后一个元素开始,我们令 \(|d_{n+1}|=c_{n+1}\),然后如果 \(|d_{n+1}|=w_n\) 那么我们直接令 \(|d_n|=c_n\) 就好了,否则如果 \(c_n=w_n\) 说明 \(|d_n|\) 设为 \(w_n\) 是合法的选择,我们干脆就令 \(|d_n|=w_n\),否则我们就只能令 \(|d_{n}|=w_n-|d_{n+1}|\)。然后我们可以根据 \(|d_n|\) 构造出 \(d_n\),具体方案就是从右往左扫一遍,如果 \(|d_i|+|d_{i+1}|\ne w_i\) 就将 \(d_i\) 变为其相反数。
时间复杂度 \(n\log n\)。
const int MAXN=1e6;
int n;ll C,w[MAXN+5],can[MAXN+5],d[MAXN+5],s[MAXN+5],l,r;
set<ll> st;int flg;ll dlt;
ll gettrs(ll x){return flg?(dlt-x):(dlt+x);}
ll getori(ll x){return flg?(dlt-x):(x-dlt);}
int main(){
scanf("%d%lld",&n,&C);l=0;r=C;
for(int i=1;i<=n-2;i++) scanf("%lld",&w[i]);
for(int i=1;i<=n-2;i++){
ll L=getori(0),R=getori(w[i]);if(L>R) L^=R^=L^=R;
chkmax(l,L);chkmin(r,R);
while(!st.empty()&&(*st.begin())<L) st.erase(st.begin());
while(!st.empty()&&(*st.rbegin())>R) st.erase(st.find(*st.rbegin()));
if(l>r&&st.empty()) return puts("NO"),0;
if(st.find(getori(w[i]))!=st.end()||(l<=getori(w[i])&&getori(w[i])<=r)){
st.clear();l=0;r=can[i]=w[i];flg=dlt=0;continue;
} if(l<=r) can[i]=gettrs(l);else can[i]=gettrs(*st.begin());
flg^=1;dlt=w[i]-dlt;st.insert(getori(w[i]));
} if(l<=r) d[n-1]=gettrs(l);else d[n-1]=gettrs(*st.begin());
for(int i=n-2;i;i--){
if(can[i]==w[i]) d[i]=w[i];
else if(d[i+1]==w[i]) d[i]=can[i];
else d[i]=w[i]-d[i+1];
} ll t=1;
// for(int i=1;i<=n-1;i++) printf("%lld%c",d[i]," \n"[i==n-1]);
for(int i=n-2;i;i--){
if(abs(d[i])+abs(d[i+1])!=w[i]) t=-t;
d[i]=t*d[i];
} ll mn=1e18;puts("YES");
for(int i=1;i<=n;i++) s[i]=s[i-1]+d[i-1],chkmin(mn,s[i]);
for(int i=1;i<=n;i++) printf("%lld%c",s[i]-mn," \n"[i==n]);
return 0;
}
Codeforces 1500F - Cupboards Jumps(set)的更多相关文章
- Codeforces I. Producing Snow(优先队列)
题目描述: C. Producing Snow time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces Gym101341K:Competitions(DP)
http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...
- 【CodeForces - 651C 】Watchmen(map)
Watchmen 直接上中文 Descriptions: 钟表匠们的好基友马医生和蛋蛋现在要执行拯救表匠们的任务.在平面内一共有n个表匠,第i个表匠的位置为(xi, yi). 他们需要安排一个任务计划 ...
- [Codeforces 274E]:Mirror Room(模拟)
题目传送门 题目描述 有一个$n\times m$的格子图,其中有一些是黑色的,另一些为白色.从某个白色格子的中心点向左上($NW$),左下($SW$),右上($NE$),右下($SE$)四个方向中的 ...
- CodeForces - 1162E Thanos Nim (博弈论)
Alice and Bob are playing a game with nn piles of stones. It is guaranteed that nn is an even number ...
- Codeforces Round #627 (Div. 3) C - Frog Jumps(逻辑)
题意: 有一个每个单元标明移动方向的长为n的序列,每次移动不能超过距离k,问能够从0移动到n+1的k的最小值. 思路: k=最长连续L序列长度+1. #include <bits/stdc++. ...
- CodeForces 540C Ice Cave (BFS)
http://codeforces.com/problemset/problem/540/C Ice Cave Time Limit:2000MS Memory Limit:262 ...
- codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
随机推荐
- 【UE4 C++ 基础知识】<15> 智能指针 TSharedPtr、UniquePtr、TWeakPtr、TSharedRef
基本概念 UE4 对 UObject 对象提供垃圾回收 UE4 对原生对象不提供垃圾回收,需要手动进行清理 方式 malloc / free new / delete new与malloc的区别在于, ...
- 第六次Scrum Metting
日期:2021年5月3日 会议主要内容概述:讨论前后端进度,前端各模块对接以及前后端对接. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 数据模块 ...
- vscode插件集合整理
针对PEPE8进行代码规范提示,安装flake8之后写代码的时候编辑器就会提示哪里出错,代码格式不规范也会提示,具体安装方式如下: 1.pip install flake8 2.安装flake8成功后 ...
- 转:进行vivado开发时,Generate Bitstream报错[DRC NSTD-1],详细解决步骤
报错如下 [Drc 23-20] Rule violation (NSTD-1) Unspecified I/O Standard - 4 out of 142 logical ports use I ...
- mysql登录后重置root密码的步骤
mysql重置root密码. 方法一: 编辑配置文件 /etc/my.cnf ,在[mysqld]后面任意一行添加"skip-grant-tables"用来跳过密码验证 接下来我们 ...
- newusers 拷贝服务器A上的用户,批量添加到其它服务器
服务器B 需要添加多个用户,要求与服务器A 的用户列表一致 1.拷贝服务器A 上的 /etc/passwd 中用户信息,用user1-10为例 #grep ^user /etc/passwd > ...
- Downward API —— 在容器内部获取 Pod 信息
我们知道,每个 Pod 在被超过创建出来之后,都会被系统分配唯一的名字.IP地址,并且处于某个 Namespace 中,那么我们如何在 Pod 的容器内获取 Pod 的这些重要信息呢? 答案就是使用 ...
- Vulnstack内网靶场4
环境 漏洞详情 (qiyuanxuetang.net) 仅主机模式内网网段192.168.183.0/24 外网网段192.168.157.0/24 其中Ubuntu作为对外的内网机器 攻击机kali ...
- python基本数据类型操作
str 字符串 #1.进行字符串转换 首字母转换成大写 # name = 'wangjianhui' # v = name.capitalize() # print(v) #2. 字符转换小写 # n ...
- HCNP Routing&Switching之BGP团体属性和团体属性过滤器
前文我们了解了BGP的路由过滤已经as-path过滤器的使用相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15542559.html:今天我们来聊一聊 ...