洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)
感觉是道挺好的题,可惜当时没写题解来着的?
根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后
\]
于是我们求出 \(q_i\) 即可。
我们设 \(dp_{i,j}\) 表示在前 \(i\) 张牌里发动了 \(j\) 张牌的概率。
如果已知 \(dp_{i,j}\),那么可以这样求出 \(q_i\):
\]
稍微解释一下这个式子。我们枚举在前 \(i-1\) 个牌里面发动了 \(j\) 个牌。这意味着有 \(j\) 轮不会考虑到第 \(i\) 张牌。在剩下 \(r-j\) 轮当中,\(i\) 号卡牌一次都没被发动的概率为 \((1-p_i)^{r-j}\),\(1-(1-p_i)^{r-j}\) 就是卡牌 \(i\) 至少被发动一次的概率。
那么怎样求 \(dp_{i,j}\) 呢,其实用背包的套路就可以了。分两种情况:
- 如果卡牌 \(j\) 被选,那么 \(dp_{i,j}\) 可以从 \(dp_{i-1,j-1}\) 转移过来。有 \(r-j+1\) 轮会考虑到卡牌 \(i\),卡牌 \(i\) 发动的概率为 \((1-(1-p_i)^{r-j+1})\)。
- 如果卡牌 \(j\) 没被选,那么 \(dp_{i,j}\) 可以从 \(dp_{i-1,j}\) 转移过来。有 \(r-j\) 轮会考虑到卡牌 \(i\),卡牌 \(i\) 未被发动的概率为 \((1-p_i)^{r-j}\)。
综上 \(dp_{i,j}=dp_{i-1,j-1}\times(1-(1-p_i)^{r-j+1})+dp_{i,j}\times(1-p_i)^{r-j}\)
于是这题就做完了,复杂度 \(\mathcal O(Tnr)\)。
另外预处理 \(1-p_i\) 的幂。快速幂会多一个 \(\log\)
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y10101010101
#define y0 y01010101010
typedef pair<int,int> pii;
typedef long long ll;
int T,n,r,d[222];
double p[222],dp[222][222];
double pw[222][222];
inline void clear(){
for(int i=1;i<=n;i++) d[i]=0;
for(int i=1;i<=n;i++) p[i]=0;
for(int i=0;i<=n;i++) for(int j=0;j<=n;j++) dp[i][j]=0;
for(int i=0;i<=n;i++) for(int j=0;j<=r;j++) pw[i][j]=0;
}
inline void solve(){
scanf("%d%d",&n,&r);clear();//remember to clear the data!
for(int i=1;i<=n;i++) scanf("%lf%d",&p[i],&d[i]);
for(int i=1;i<=n;i++){
pw[i][0]=1;
for(int j=1;j<=r;j++){
pw[i][j]=pw[i][j-1]*(1.0-p[i]);//calculate the power of 1-p[i]
// printf("%d %d %.10lf\n",i,j,pw[i][j]);
}
}
dp[0][0]=1;
for(int i=1;i<=n;i++) for(int j=0;j<=i;j++){
dp[i][j]=dp[i-1][j]*pw[i][r-j];
if(j) dp[i][j]+=dp[i-1][j-1]*(1-pw[i][r-j+1]);//calculate dp[i][j] using the fomula above
// printf("%d %d %.10lf\n",i,j,dp[i][j]);
}
double ans=0;
for(int i=1;i<=n;i++){
double prob=0;
for(int j=0;j<=i-1;j++){
prob+=dp[i-1][j]*(1-pw[i][r-j]);//calculate p[i]
}
// printf("%d %.10lf\n",i,prob);
ans+=prob*d[i];
}
printf("%.10lf\n",ans);
}
int main(){
scanf("%d",&T);
while(T--) solve();
return 0;
}
/*
2
3 2
0.5000 2
0.3000 3
0.9000 1
3 2
0.5000 2
0.3000 3
0.9000 1
*/
洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)的更多相关文章
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
- [洛谷 P3239] [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- 洛谷P3239 [HNOI2015]亚瑟王
题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- 洛谷P3239 [HNOI2015]亚瑟王(期望dp)
传送门 stdcall大佬好强 期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害 因为每一张牌只能用一次,我们设$dp[i]$表示第 ...
- P3239 [HNOI2015]亚瑟王——概率DP
题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- [HNOI2015]亚瑟王(期望+DP)
题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...
随机推荐
- 【原创】Linux v4l2框架分析
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...
- 【二食堂】Alpha - Scrum Meeting 7
Scrum Meeting 7 例会时间:4.17 11:40 - 12:00 进度情况 组员 昨日进度 今日任务 李健 1. 继续文本区域的开发,先完成目前简陋的添加方式,再区实现勾选功能issue ...
- 2021.9.20考试总结[NOIP模拟57]
(换个编辑器代码就SB地不自动折叠了.. T1 2A 考察快读的写法. $code:$ T1 #include<bits/stdc++.h> #define scanf SCANF=sca ...
- Java并发:ReadWriteLock 读写锁
读写锁在同一时刻可以允许多个线程访问,但是在写线程访问,所有的读线程和其他写线程均被阻塞. 读写锁不像 ReentrantLock 那些排它锁只允许在同一时刻只允许一个线程进行访问,读写锁可以允许多个 ...
- Flink计算pv和uv的通用方法
PV(访问量):即Page View, 即页面浏览量或点击量,用户每次刷新即被计算一次. UV(独立访客):即Unique Visitor,访问您网站的一台电脑客户端为一个访客.00:00-24:00 ...
- DDR3 IP和CIC IP仿真问题解决记录
1.更新vivado的仿真库(data/secureip和verilog和vhdl文件夹)至最新的vivado库和生成IP的版本匹配: 2.vcs编译脚本里面把仿真库地址指向匹配的仿真库版本: 3.v ...
- hdu 1166 敌兵布阵(单点更新,区间查询)
题意: N个工兵营地.工兵营地里的人数分别为:a1,a2,....aN Add i,j:第i个工兵营地里增加j人 Sub i,j:第i个工兵营地里减少j人 Query i,j:查询第i个第j个工兵营地 ...
- Docker安装配置Tomcat
1.使用docker pull tomcat下载镜像(不加tag则是下载最新版本) 2.运行容器(-d 后台运行:-p 指定端口映射),接的是镜像ID 3.进入容器执行命令,接的是容器ID 4.宿主机 ...
- oracle 归档日志:db_recovery_file_dest、log_archive_dest和log_archive_dest_n的区别和使用
概念: db_recovery_file_dest:默认的指定闪回恢复区路径 log_archive_dest:指定归档文件存放的路径,所有归档路径必须是本地的,默认为''.log_archive_d ...
- SpringCloud升级之路2020.0.x版-30. FeignClient 实现重试
本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 需要重试的场景 微服务系统中,会遇到在线发布,一般的发布更新策略是:启动一个新的,启动成功 ...