洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)
感觉是道挺好的题,可惜当时没写题解来着的?
根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后
\]
于是我们求出 \(q_i\) 即可。
我们设 \(dp_{i,j}\) 表示在前 \(i\) 张牌里发动了 \(j\) 张牌的概率。
如果已知 \(dp_{i,j}\),那么可以这样求出 \(q_i\):
\]
稍微解释一下这个式子。我们枚举在前 \(i-1\) 个牌里面发动了 \(j\) 个牌。这意味着有 \(j\) 轮不会考虑到第 \(i\) 张牌。在剩下 \(r-j\) 轮当中,\(i\) 号卡牌一次都没被发动的概率为 \((1-p_i)^{r-j}\),\(1-(1-p_i)^{r-j}\) 就是卡牌 \(i\) 至少被发动一次的概率。
那么怎样求 \(dp_{i,j}\) 呢,其实用背包的套路就可以了。分两种情况:
- 如果卡牌 \(j\) 被选,那么 \(dp_{i,j}\) 可以从 \(dp_{i-1,j-1}\) 转移过来。有 \(r-j+1\) 轮会考虑到卡牌 \(i\),卡牌 \(i\) 发动的概率为 \((1-(1-p_i)^{r-j+1})\)。
- 如果卡牌 \(j\) 没被选,那么 \(dp_{i,j}\) 可以从 \(dp_{i-1,j}\) 转移过来。有 \(r-j\) 轮会考虑到卡牌 \(i\),卡牌 \(i\) 未被发动的概率为 \((1-p_i)^{r-j}\)。
综上 \(dp_{i,j}=dp_{i-1,j-1}\times(1-(1-p_i)^{r-j+1})+dp_{i,j}\times(1-p_i)^{r-j}\)
于是这题就做完了,复杂度 \(\mathcal O(Tnr)\)。
另外预处理 \(1-p_i\) 的幂。快速幂会多一个 \(\log\)
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y10101010101
#define y0 y01010101010
typedef pair<int,int> pii;
typedef long long ll;
int T,n,r,d[222];
double p[222],dp[222][222];
double pw[222][222];
inline void clear(){
for(int i=1;i<=n;i++) d[i]=0;
for(int i=1;i<=n;i++) p[i]=0;
for(int i=0;i<=n;i++) for(int j=0;j<=n;j++) dp[i][j]=0;
for(int i=0;i<=n;i++) for(int j=0;j<=r;j++) pw[i][j]=0;
}
inline void solve(){
scanf("%d%d",&n,&r);clear();//remember to clear the data!
for(int i=1;i<=n;i++) scanf("%lf%d",&p[i],&d[i]);
for(int i=1;i<=n;i++){
pw[i][0]=1;
for(int j=1;j<=r;j++){
pw[i][j]=pw[i][j-1]*(1.0-p[i]);//calculate the power of 1-p[i]
// printf("%d %d %.10lf\n",i,j,pw[i][j]);
}
}
dp[0][0]=1;
for(int i=1;i<=n;i++) for(int j=0;j<=i;j++){
dp[i][j]=dp[i-1][j]*pw[i][r-j];
if(j) dp[i][j]+=dp[i-1][j-1]*(1-pw[i][r-j+1]);//calculate dp[i][j] using the fomula above
// printf("%d %d %.10lf\n",i,j,dp[i][j]);
}
double ans=0;
for(int i=1;i<=n;i++){
double prob=0;
for(int j=0;j<=i-1;j++){
prob+=dp[i-1][j]*(1-pw[i][r-j]);//calculate p[i]
}
// printf("%d %.10lf\n",i,prob);
ans+=prob*d[i];
}
printf("%.10lf\n",ans);
}
int main(){
scanf("%d",&T);
while(T--) solve();
return 0;
}
/*
2
3 2
0.5000 2
0.3000 3
0.9000 1
3 2
0.5000 2
0.3000 3
0.9000 1
*/
洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)的更多相关文章
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
- [洛谷 P3239] [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- 洛谷P3239 [HNOI2015]亚瑟王
题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- 洛谷P3239 [HNOI2015]亚瑟王(期望dp)
传送门 stdcall大佬好强 期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害 因为每一张牌只能用一次,我们设$dp[i]$表示第 ...
- P3239 [HNOI2015]亚瑟王——概率DP
题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- [HNOI2015]亚瑟王(期望+DP)
题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...
随机推荐
- keras框架下的深度学习(一)手写体识别
这个系列文章主要记录使用keras框架来搭建深度学习模型的学习过程,其中有一些自己的想法和体会,主要学习的书籍是:Deep Learning with Python,使用的IDE是pycharm. 在 ...
- 源码解析-Abp vNext丨LocalEventBus
前言 基础篇已经更新完了,从本篇开始我们进入,中级篇(学习部分源代码)我会挑一些我个人认为比较重要的知识点结合部分开源项目进行源码讲解,咱们废话不说直接上车. Abp vNext的事件总线分2种,一种 ...
- SpringBoot 01 hello world 01
hello world项目结构: pom中配置的依赖相当于spring boot的可安装插件,需要下载的依赖直接在里边配置. 目前用到的每个注解: 1.主程序中 @SpringBootApplicat ...
- vue3.x移动端适配px2rem
1.什么是px2rem px2rem是一个插件能将px自动转换为rem,以适配各种不同的屏幕尺寸.前端开发可以直接使用设计稿量出的尺寸或者蓝湖给出的px进行布局,这样极大的提高了开发效率. 2.前提条 ...
- logstash multi pipeline的使用
logstash multi pipeline的使用 一.背景 二.解决方案 1.方案一: 2.方案二: 3.方案三: 三.实现步骤 1.编写 pipeline 文件 1.从文件收集,输出到控制台 2 ...
- dwr简单应用及一个反向ajax消息推送
由于项目中最近需要用到dwr实现一些功能,因此在网上和dwr官网上找了一些资料进行学习.在此记录一下.(此处实现简单的dwr应用和dwr消息反向推送) 一.引入dwr的包 <dependency ...
- csp-s 2021
T1 廊桥分配 当一架飞机抵达机场时,可以停靠在航站楼旁的廊桥,也可以停靠在位于机场边缘的远机位. 乘客一般更期待停靠在廊桥,因为这样省去了坐摆渡车前往航站楼的周折. 然而,因为廊桥的数量有限,所以这 ...
- NOIP模拟85(多校18)
前言 好像每个题目背景所描述的人都是某部番里的角色,热切好像都挺惨的(情感上的惨). 然后我只知道 T1 的莓,确实挺惨... T1 莓良心 解题思路 首先答案只与 \(w\) 的和有关系,于是问题就 ...
- 分析pcap包(基于UDP)
//c代码#include <stdlib.h> #include <stdio.h> #include <pcap.h> #include <string. ...
- Centos7 误删除bin/sbin之类的恢复
参考连接:https://blog.csdn.net/weixin_41843733/article/details/107468767 挂载对应版本的光盘进入急救模式,复制已经丢失的命令到/mnt/ ...