response

上一篇说的client.py来发送请求,这里就来看另一个response.py,该文件主要是完成测试断言方法

可用资料

jmespath[json数据取值处理]: https://github.com/jmespath/jmespath.py

导包

from typing import Dict, Text, Any, NoReturn

import jmespath
import requests
from jmespath.exceptions import JMESPathError
from loguru import logger from httprunner import exceptions
from httprunner.exceptions import ValidationFailure, ParamsError
from httprunner.models import VariablesMapping, Validators, FunctionsMapping
# 数据解析,字符串解析,方法字典
from httprunner.parser import parse_data, parse_string_value, get_mapping_function

源码附注释

def get_uniform_comparator(comparator: Text):
""" convert comparator alias to uniform name
转换统一的比较器名称
"""
if comparator in ["eq", "equals", "equal"]:
return "equal"
elif comparator in ["lt", "less_than"]:
return "less_than"
elif comparator in ["le", "less_or_equals"]:
return "less_or_equals"
elif comparator in ["gt", "greater_than"]:
return "greater_than"
elif comparator in ["ge", "greater_or_equals"]:
return "greater_or_equals"
elif comparator in ["ne", "not_equal"]:
return "not_equal"
elif comparator in ["str_eq", "string_equals"]:
return "string_equals"
elif comparator in ["len_eq", "length_equal"]:
return "length_equal"
elif comparator in [
"len_gt",
"length_greater_than",
]:
return "length_greater_than"
elif comparator in [
"len_ge",
"length_greater_or_equals",
]:
return "length_greater_or_equals"
elif comparator in ["len_lt", "length_less_than"]:
return "length_less_than"
elif comparator in [
"len_le",
"length_less_or_equals",
]:
return "length_less_or_equals"
else:
return comparator def uniform_validator(validator):
""" unify validator
统一验证器
Args:
validator (dict): validator maybe in two formats: format1: this is kept for compatibility with the previous versions.
{"check": "status_code", "comparator": "eq", "expect": 201}
{"check": "$resp_body_success", "comparator": "eq", "expect": True}
format2: recommended new version, {assert: [check_item, expected_value]}
{'eq': ['status_code', 201]}
{'eq': ['$resp_body_success', True]} Returns
dict: validator info {
"check": "status_code",
"expect": 201,
"assert": "equals"
} """
if not isinstance(validator, dict):
raise ParamsError(f"invalid validator: {validator}") if "check" in validator and "expect" in validator:
# format1
check_item = validator["check"]
expect_value = validator["expect"]
message = validator.get("message", "")
comparator = validator.get("comparator", "eq") elif len(validator) == 1:
# format2
comparator = list(validator.keys())[0]
compare_values = validator[comparator] if not isinstance(compare_values, list) or len(compare_values) not in [2, 3]:
raise ParamsError(f"invalid validator: {validator}") check_item = compare_values[0]
expect_value = compare_values[1]
if len(compare_values) == 3:
message = compare_values[2]
else:
# len(compare_values) == 2
message = "" else:
raise ParamsError(f"invalid validator: {validator}") # uniform comparator, e.g. lt => less_than, eq => equals
assert_method = get_uniform_comparator(comparator) return {
"check": check_item,
"expect": expect_value,
"assert": assert_method,
"message": message,
} class ResponseObject(object):
def __init__(self, resp_obj: requests.Response):
""" initialize with a requests.Response object Args:
resp_obj (instance): requests.Response instance """
self.resp_obj = resp_obj
self.validation_results: Dict = {} def __getattr__(self, key):
# 魔术方法,查找属性时调用 实例对象.属性名
if key in ["json", "content", "body"]:
try:
value = self.resp_obj.json()
except ValueError:
value = self.resp_obj.content
elif key == "cookies":
value = self.resp_obj.cookies.get_dict()
else:
try:
value = getattr(self.resp_obj, key)
except AttributeError:
err_msg = "ResponseObject does not have attribute: {}".format(key)
logger.error(err_msg)
raise exceptions.ParamsError(err_msg) self.__dict__[key] = value
return value def _search_jmespath(self, expr: Text) -> Any:
# 根据jmespath语法搜索提取实际结果值
resp_obj_meta = {
"status_code": self.status_code,
"headers": self.headers,
"cookies": self.cookies,
"body": self.body,
}
if not expr.startswith(tuple(resp_obj_meta.keys())):
return expr try:
check_value = jmespath.search(expr, resp_obj_meta)
except JMESPathError as ex:
logger.error(
f"failed to search with jmespath\n"
f"expression: {expr}\n"
f"data: {resp_obj_meta}\n"
f"exception: {ex}"
)
raise return check_value def extract(self, extractors: Dict[Text, Text]) -> Dict[Text, Any]:
# 根据jmespath 语法找到值 放入 提取参数字典中
if not extractors:
return {} extract_mapping = {}
for key, field in extractors.items():
field_value = self._search_jmespath(field)
extract_mapping[key] = field_value logger.info(f"extract mapping: {extract_mapping}")
return extract_mapping # 验证&结果回写
def validate(
self,
validators: Validators,
variables_mapping: VariablesMapping = None,
functions_mapping: FunctionsMapping = None,
) -> NoReturn: variables_mapping = variables_mapping or {}
functions_mapping = functions_mapping or {} self.validation_results = {}
if not validators:
return validate_pass = True
failures = [] for v in validators: if "validate_extractor" not in self.validation_results:
self.validation_results["validate_extractor"] = [] u_validator = uniform_validator(v) # check item
check_item = u_validator["check"]
if "$" in check_item:
# 需要检查的元素是 变量或者函数
# check_item is variable or function
check_item = parse_data(
check_item, variables_mapping, functions_mapping
)
check_item = parse_string_value(check_item) if check_item and isinstance(check_item, Text):
check_value = self._search_jmespath(check_item)
else:
# variable or function evaluation result is "" or not text
check_value = check_item # comparator
assert_method = u_validator["assert"]
assert_func = get_mapping_function(assert_method, functions_mapping) # expect item
expect_item = u_validator["expect"]
# parse expected value with config/teststep/extracted variables
expect_value = parse_data(expect_item, variables_mapping, functions_mapping) # message
message = u_validator["message"]
# parse message with config/teststep/extracted variables
message = parse_data(message, variables_mapping, functions_mapping) validate_msg = f"assert {check_item} {assert_method} {expect_value}({type(expect_value).__name__})" validator_dict = {
"comparator": assert_method,
"check": check_item,
"check_value": check_value,
"expect": expect_item,
"expect_value": expect_value,
"message": message,
} try:
assert_func(check_value, expect_value, message)
validate_msg += "\t==> pass"
logger.info(validate_msg)
validator_dict["check_result"] = "pass"
except AssertionError as ex:
validate_pass = False
validator_dict["check_result"] = "fail"
validate_msg += "\t==> fail"
validate_msg += (
f"\n"
f"check_item: {check_item}\n"
f"check_value: {check_value}({type(check_value).__name__})\n"
f"assert_method: {assert_method}\n"
f"expect_value: {expect_value}({type(expect_value).__name__})"
)
message = str(ex)
if message:
validate_msg += f"\nmessage: {message}" logger.error(validate_msg)
failures.append(validate_msg) self.validation_results["validate_extractor"].append(validator_dict) if not validate_pass:
failures_string = "\n".join([failure for failure in failures])
raise ValidationFailure(failures_string)

HttpRunner3源码阅读:7.响应后处理 response.py的更多相关文章

  1. HttpRunner3源码阅读: 1. 目录结构分析

    初衷 身处软件测试行业的各位应该都有耳闻HttpRunner 开源测试工具/框架(接口测试),作者博客 为什么出这系列? 不少测试同行都建议阅读HttpRunner,源码学习其设计思想. 社区当下Py ...

  2. Django 源码小剖: 响应数据 response 的返回

    响应数据的返回 在 WSGIHandler.__call__(self, environ, start_response) 方法调用了 WSGIHandler.get_response() 方法, 由 ...

  3. HttpRunner3源码阅读:2. 模型定义

    models.py 昨天体验的时候我们分别执行了httprunner -h,httprunner startproject demo, httprunner run demo,但是源码中其调用了其他文 ...

  4. HttpRunner3源码阅读:4. loader项目路径加载,用例文件转换、方法字典生成

    loader.py 这个文件中主要是对yaml,json用例加载转换成用例处理, 预置函数加载成方法字典,路径加载等 可用资料 [importlib]. https://docs.python.org ...

  5. httprunner3源码解读(2)models.py

    源码目录结构 我们首先来看下models.py的代码结构 我们可以看到这个模块中定义了12个属性和22个模型类,我们依次来看 属性源码分析 import os from enum import Enu ...

  6. httprunner3源码解读(3)client.py

    源码目录结构 ApiResponse 这个类没啥好说的 class ApiResponse(Response): """ 继承了requests模块中的Response类 ...

  7. Flask源码阅读-第二篇(flask\__init__.py)

    源码: # -*- coding: utf-8 -*-""" flask ~~~~~ A microframework based on Werkzeug. It's e ...

  8. httprunner3源码解读(4)parser.py

    源码结构目录 可以看到此模块定义了4个属性和12个函数,我们依次来讲解 属性源码分析 # 匹配http://或https:// absolute_http_url_regexp = re.compil ...

  9. HTTP请求库——axios源码阅读与分析

    概述 在前端开发过程中,我们经常会遇到需要发送异步请求的情况.而使用一个功能齐全,接口完善的HTTP请求库,能够在很大程度上减少我们的开发成本,提高我们的开发效率. axios是一个在近些年来非常火的 ...

随机推荐

  1. 使用 TypeScript,React,ANTLR 和 Monaco Editor 创建一个自定义 Web 编辑器(二)

    译文来源 欢迎阅读如何使用 TypeScript, React, ANTLR4, Monaco Editor 创建一个自定义 Web 编辑器系列的第二章节, 在这之前建议您阅读使用 TypeScrip ...

  2. kubernetes的网络代理模式

    在k8s中,如果想ping svc以及ip,发现无法ping通,使用测试环境为k8s 1.6,后来k8s升级到1.12版本,发现ping svc以及ip可以ping通,这里分析一下原因. 后来发现是由 ...

  3. 区分DDD中的Domain, Subdomain, Bounded Context, Problem/Solution Space

    区分DDD中的Domain, Subdomain, Bounded Context, Problem/Solution Space 译自: Domain, Subdomain, Bounded Con ...

  4. 13、win10系统远程桌面oracle修正问题

    1.A电脑(Windows 10)远程连接B电脑(Widows Server 2016), 出现错误: 出现身份验证错误.要求的函数不受支持 远程计算机:xx.xx.xx.xx 这可能是由于CredS ...

  5. 12.10File类

    要点提示:File类包含了获得一个文件/目录的属性,以及对文件/目录进行改名和删除的方法. 在文件系统中,每个文件都存放在一个目录下.绝对文件名,是由文件名和它的完整路径以及驱动器字母组成.例如,c: ...

  6. redis为什么那么快?

    数据库有很多,为什么Redis能有如此突出的表现呢?一方面,因为它是内存数据库,所有操作都在内存上完成.另外一方面就要归功于他的数据结构.高效的数据结构是Redis快速处理的基础.今天我们就来聊聊了R ...

  7. Https:证书生成 .p12 .keyStore 和 .truststore文件理解

    当我们需要SSL证书时,可以自动生成SSL证书,但是每个系统都申请一次证书会比较麻烦,所以用到了如下几个文件格式:   .p12(PKCS #12) 我们的每一个证书都可以生成一个.p12文件,这个文 ...

  8. 从 Java 代码到 Java 堆

    本文将为您提供 Java 代码内存使用情况的深入见解,包括将 int 值置入一个 Integer 对象的内存开销.对象委托的成本和不同集合类型的内存效率.您将了解到如何确定应用程序中的哪些位置效率低下 ...

  9. Shell中[和[[的异同

    1.     概念上来说 "[[",是关键字,许多shell(如ash bsh)并不支持这种方式.ksh, bash(据说从2.02起引入对[[的支持)等支持."[&qu ...

  10. 24 shell 管道命令与过滤器

    1.管道命令的用法 2.使用管道命令的好处: 3.重定向和管道的区别 4.Linux管道实例 5.管道与重定向 1)管道与输入重定向 2)管道与输出重定向 6.过滤器 7.过滤器举栗 1.管道命令的用 ...