如何设计一个高性能 Elasticsearch mapping
前言
在关系型数据库设计当中,表的设计尤其重要,然而关系型数据库更关注的表与表之间的关系,以及表的划分是否合理,而 Elasticsearch
中却更加关注字段类型的设计,一个好的字段类型设计可以更好的利用 Elasticsearch
的搜索分析特性。
mapping
如果说我们想要用好 Elasticsearch
,那么就必须要先了解 mapping
什么是 mapping
。一句话:mapping
是定义如何存储和索引文档及其包含的字段的过程。
mapping 能做什么
前面我们提到,在 Elasticsearch
中,mapping
类似于传统关系型数据库的表结构定义,主要做以下几件事:
- 定义字段名称和字段类型。
- 定义倒排索引相关的配置,比如是否被索引,是否可以被分词等。
mapping
可以分为两种:Dynamic mapping
和 Explicit mapping
。
Dynamic mapping
Dynamic mapping
即:动态映射。动态映射顾名思义就是 mapping
会被动态创建,也就是说我们不需要定义 mapping
就可以往一个索引插入数据,插入索引数据之后,Elasticsearch
会根据插入的数据自动推测数据类型,进而动创建 mapping
。
比如下面就是往一个不存在的索引 index_001
插入一条数据:
PUT index_001/_doc/1
{
"name":"lonely wolf",
"age": 18,
"create_date":"2021-05-19 20:45:11",
"update_date":"2021-05-23"
}
插入数据之后,执行 GET index_001
来查询一下索引信息:
可以发现,这时候索引已经被自动创建了,而且 age
字段被 Elasticsearch
定义为 long
类型,update_date
被定义为 data
类型,其他两个字段则被推测为 text
类型。
Elasticsearch
中自动映射类型规则可以通过 dynamic
参数进行配置,dynamic
类型有 4
种:
dynamic=true
默认值。当设置为 true
时,一旦有新字段插入文档,则 mapping
会被同步更新。
我们在上面的文档中再插入一个新文档,新文档新增一个 address
字段:
PUT index_001/_doc/2
{
"name":"lonely wolf2",
"age": 20,
"create_date":"2021-05-23 11:37:11",
"update_date":"2021-05-23",
"address":"广东深圳"
}
然后再查看一下 mapping
,可以看到 mapping
已经新增了一个 address
字段,mapping
字段被更新意味着该字段会加入索引:
dynamic=runtime
这个类型和 true
类型非常相似,但是有一个非常大的区别就是,虽然加入新字段也会更新 mapping
,但是新加入的字段不会被索引,也就是不会使得索引变大,不过虽然不被索引,但是新加入的字段依然可以被查询,只是查询的代价会更大。所以这种类型一般不建议用在经常查询的条件字段上,而更适合用在一些不确定数据结构的日志类索引中。
修改 dynamic
类型:
PUT index_001/_mapping
{
"dynamic": "runtime"
}
新增一个文档,并加入一个新字段:
PUT index_001/_doc/3
{
"email":"123@qq.com"
}
最后询一下 mapping
,可以看到字段属性是 runtime
,而且类型是 keyword
:
下表就是自动创建 mapping
时,Elasticsearch
的映射关系:
插入数据类型 | dynamic=true | dynamic=runtime |
---|---|---|
null | 不会添加任何字段 | 不会添加任何字段 |
true 或 false | boolean | boolean |
double | float | double |
integer | long | long |
object | object | object |
string(通过 date 校验) | date | date |
string(通过 numreic 校验) | float 或 long | double 或 long |
string(没有通过 date 或 numreic 校验) | text ,并且同时会创建一个 keyword 子域 | keyword |
array | 取决于数组中第一个非 null 值 | 取决于数组中第一个非 null 值 |
PS:keyword
表示 不参与分词。
dynamic=false
当设置为 false
时,新加入的字段不会被更新到 mapping
,也就是说新字段不会被索引,故以这个字段为条件进行搜索时,无法被搜索到(这一点要注意和 runtime
类型进行区分),不过虽然无法被索引,但是该字段会出现在 _source
中。也就是说该字段不能作为查询条件,但是能被查询出来。
接下来我们将 dynamic
修改为 false
,并新增一个字段来验证,可以发现新增的字段会出现在 _source
中,但是无法作为条件被查询出来:
dynamic=strict
这种类型最为严格,表示不允许新增一个不在 mapping
中的字段,一旦新增的字段不在 mapping
定义中,则直接报错:
是否可以修改 mapping 中的数据类型
在 Elasticsearch
中,一旦一个字段被定义在了 mapping
中,是无法被修改的,因为一旦字段被修改了,就会无法被索引(新增字段除外),所以一般我们需要修改索引的话,都会重建索引,并采用 reindex
操作来迁移数据。
关闭 dynamic mapping
可以通过以下两个配置来关闭 dynamic mapping
,以下两个属性默认值均为 true
,如果需要关闭,则需要修改为 false
:
action.auto_create_index: true
index.mapper.dynamic: true
Explicit mapping
Explicit mapping
即:显式映射。也就是说这时候我们需要显示的定义字段类型。
Elasticsearch
中支持的字段类型很多,在这里就举一些比较常用的字段类型:
text 类型
这是最常用的一种类型,存储字符串,用于全文索引。当字段被定义为 text
类型时,默认不能用于聚合,排序等操作:
可以看到,用 text
类型字段排序汇报凑,如果想要允许这些操作,可以通过设置 fielddata=true
,如下
PUT my-index-011/_mapping
{
"properties": {
"my_field": {
"type": "text",
"fielddata": true
}
}
}
field
字段存储在堆内存中,因为其涉及到的计算比较消耗性能,所以一般不建议设置 fielddata=true
,而是通过建立一个 keyword
子域来实现(默认方式):
PUT index_111
{
"mappings": {
"properties": {
"my_field": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
}
}
}
}
这种定义方式我们可以将一个字段同时作为 text
和 keyword
类型使用,如果要用于聚合或者排序等操作则可以使用 字段名.keyword
来作为字段名来进行操作:
keyword 类型
这种类型也非常常用,该字段存储的数据表示一个整体,不可被分词,所以一般不会用来定义大本文的全文检索字段,而是用来存储一些结构化的字符串,比如:id,邮箱,标签等。
keyword
类型一般用于聚合,排序等操作。除此之外,该字段还有两种衍生类型:constant_keyword
和 wildcard
。
constant_keyword
:一般用于定义常量类型,比如一个索引中某一个字段全部为同一个值,可以定义为这种类型。wildcard
:一般用于模糊匹配查询或者正则匹配查询。
如下就是一个模糊匹配查询的示例(可以配合通配符使用,类似于关系型数据库的 like
操作):
GET index_112/_search
{
"query": {
"wildcard": {
"my_wildcard": {
"value": "*quite*lengthy"
}
}
}
}
date 类型
用于定义日期类型,定义日期类型的同时,可以通过 format
来指定日期的格式:
PUT index_113
{
"mappings": {
"properties": {
"date": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
numeric 类型
Elasticsearch
中提供了比较多的格式用来表示不同长度的数字类型:
数字类型 | 长度 |
---|---|
long | 64 位有符号整数。范围:-2 的 63 次方到 2 的 63 次方 -1 |
integer | 32 位有符号整数。范围:-2 的 31 次方到 2 的 31 次方 -1 |
short | 16 位有符号整数。范围:-32768 到 32767 |
byte | 8 位有符号整数。范围:-128 到 127 |
double | 64 位双精度小数 |
float | 32 位单精度小数 |
half_float | 16 位单精度小数 |
scaled_float | 带有缩放因子的浮点数,一般适用于存放金额之类的数据。比如 18.88 元,缩放因子是 100,那么在索引时会被索引为 1888(即:原值 * 缩放因子) |
unsigned_long | 64 位无符号整数。范围:0 到 2 的 64 次方减 1 |
定义方式如下所示:
PUT index_002
{
"mappings": {
"properties": {
"number_of_bytes": {
"type": "integer"
},
"time_in_seconds": {
"type": "float"
},
"price": {
"type": "scaled_float",
"scaling_factor": 100
}
}
}
}
boolean 类型
布尔类型比较简单,只有 true
和 false
两种:
PUT index_001
{
"mappings": {
"properties": {
"is_published": {
"type": "boolean"
}
}
}
}
其他类型
除了上面介绍的一些比较常用的数据类型,Elasticsearch
中还有一些高级数据类型:如 Nested(嵌套类型),地理数据类型,ip
类型等。
总结
Elasticsearch
中支持动态 mapping
和显示 mapping
两种,在使用中有时候可以先插入一条数据到临时索引,等自动生成 mapping
之后,在对现有 mapping
进行修改调整,在字段上尤其要考虑好 text
类型和 keyword
类型的设置,如果需要支持全文搜索和分词搜索,则需要使用 text
类型,需要支持关键字模糊搜索或者聚合排序等操作可以考虑使用 keyword
字段。
如何设计一个高性能 Elasticsearch mapping的更多相关文章
- 如何设计一个RPC系统
版权声明:本文由韩伟原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/162 来源:腾云阁 https://www.qclou ...
- 如何设计一个简单的C++ ORM
2016/11/15 "没有好的接口,用C++读写数据库和写图形界面一样痛苦" 阅读这篇文章前,你最好知道什么是 Object Relation Mapping (ORM) 阅读这 ...
- 一个高性能、轻量级的分布式内存队列系统--beanstalk
Beanstalk是一个高性能.轻量级的.分布式的.内存型的消息队列系统.最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟.其实Beanstalkd是典型的类Mem ...
- Beanstalkd 一个高性能分布式内存队列系统
需要一个分布式内存队列,能支持这些特性:任务不重不漏的分发给消费者(最基础的).分布式多点部署.任务持久化.批量处理.错误重试..... 转载:http://rdc.taobao.com/blog/c ...
- 如何设计一个 RPC 系统
本文由云+社区发表 RPC是一种方便的网络通信编程模型,由于和编程语言的高度结合,大大减少了处理网络数据的复杂度,让代码可读性也有可观的提高.但是RPC本身的构成却比较复杂,由于受到编程语言.网络模型 ...
- 用PHP打造一个高性能好用的网站
用PHP打造一个高性能好用的网站 1. 说到高可用的话要提一下redis,用过的都知道redis是一个具备数据库特征的nosql,正好弥补了PHP的瓶颈,个人认为PHP的 瓶颈在于数据库,像Apach ...
- Elasticsearch教程(五) elasticsearch Mapping的创建
一.Mapping介绍 在Elasticsearch中,Mapping是什么? mapping在Elasticsearch中的作用就是约束. 1.数据类型声明 它类似于静态语言中的数据类型声明,比如声 ...
- 高并发架构系列:如何从0到1设计一个类Dubbo的RPC框架
在过去持续分享的几十期阿里Java面试题中,几乎每次都会问到Dubbo相关问题,比如:“如何从0到1设计一个Dubbo的RPC框架”,这个问题主要考察以下几个方面: 你对RPC框架的底层原理掌握程度. ...
- 如何设计一个优秀的API
如何设计一个优秀的API - 文章 - 伯乐在线 http://blog.jobbole.com/42317/ 如何设计一个优秀的API - 标点符 https://www.biaodianfu.co ...
随机推荐
- 论Redis分布式锁的正确使用姿势
前言 日常开发中,秒杀下单.抢红包等等业务场景,都需要用到分布式锁.而Redis非常适合作为分布式锁使用.本文将分七个方案展开,跟大家探讨Redis分布式锁的正确使用方式.如果有不正确的地方,欢迎大家 ...
- EfficientNet & EfficientDet 论文解读
概述 总体而言,这两篇论文都在追求一件事,那就是它们名字中都有的 efficient.只是两篇文章的侧重点不一样,EfficientNet 主要时研究如何平衡模型的深度 (depth).宽度 (wid ...
- IndentationError:unexpected indent”、“IndentationError:unindent does not match any outer indetation level”以及“IndentationError:expected an indented block Python常见错误
错误的使用缩进量 记住缩进增加只用在以:结束的语句之后,而之后必须恢复到之前的缩进格式. 经典错误,一定要注意缩进,尤其是在非界面化下环境的代码修改
- 全网最详细的Linux命令系列-rm命令
今天学习一下linux中删除文件和目录的命令: rm命令.rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所有文件及子目录均删除.对于链接文件,只是删除 ...
- [贪心]P1049 装箱问题
装箱问题 题目描述 有一个箱子容量为V(正整数,0≤V≤20000),同时有n个物品(0<n≤30),每个物品有一个体积(正整数). 要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小. ...
- Spring Security Oauth2 认证(获取token/刷新token)流程(password模式)
https://blog.csdn.net/bluuusea/article/details/80284458
- oo第二单元博客总结
P1 设计结构 三次作业的架构都没有较大的改动,基本上都是靠调度器接受输入的请求并放入队列,然后调度器根据不同的电梯的当前状态来把请求分配至不同电梯的请求队列中,最后电梯再根据自己的请求队列去运行.因 ...
- 关于 下载 nfs-utils时的 gssproxy conflicts with selinux-policy-3.13.1-102.el7.noarch 错误
使用 yum install nfs-utils -y 时 出现如下错误: 错误:gssproxy conflicts with selinux-policy-3.13.1-102.el7.noarc ...
- centos7 中静态IP地址的配置
虚拟机中也可以像Windows系统那样从浏览器上下载文件,但在这之前,要必须保证虚拟机网络服务通畅.而配置网络服务其实就是在编辑网卡配置文件,具体步骤如下: 网卡配置文件位置:/etc/sysconf ...
- 使用Docker及k8s启动logstash服务
前提:搭建好elasticsearch和kibana服务 下载镜像,需要下载与elasticsearch和kibana相同版本镜像 docker pull docker.elastic.co/logs ...