题目

题意简述

  link.

  有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作。每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集。求操作的方案数,对 \(10^9+7\) 取模。

数据规模

  \(n\le3\times10^4\)。

\(\text{Solution}\)

  显然当 \(n<m\),答案为 \(0\),先特判掉。

  首先列一个 naive 的 DP 方程,令 \(f(i,j)\) 为前 \(i\) 次操作选出的集合并大小为 \(j\) 的方案数。易有:

\[f(i,j)=\sum_{k=1}^j2^{j-k}{n-(j-k)\choose k}f(i-1,j-k)
\]

  那么答案为 \(\sum_{i=1}^nf(m,i)\)。暴力 DP 是 \(\mathcal{O}(mn^2)\) 的。不过很显然这个式子是一个卷积的形式。把它变一下形:

\[f(i,j)=\frac{1}{(n-j)!}\sum_{k=1}^j\frac{1}{k!}\cdot2^{j-k}[n-(j-k)]!f(i-1,j-k)
\]

  忽略毒瘤的模数,每次转移 NTT 就可以了,复杂度 \(\mathcal{O}(mn\log n)\)。

  这个 \(f\) 不太好优化。我们换一种形式,令 \(g(i,j)\) 为前 \(i\) 次操作选出前 \(j\) 个元素的方案数。所以 \(g(i,j)=\frac{f(i,j)}{n\choose j}\)。那么对于 \(g(1)\),有 \(g(1,i)=[0<i\le n]\)。来考虑两层状态的合并:

\[g(u+v,i)=\sum_{j=0}^ig(u,j)g(v,i-j){i\choose j}(2^j)^v
\]

  理解一下:把 \(u+v\) 次操作和 \(i\) 个选出的元素分拆成两步完成:第一步选 \(j\) 个元素,第二步选 \(i-j\) 个。由于要在 \(i\) 里拿出 \(j\) 个给第一步(或说拿出 \(i-j\) 给第二步),所以有系数 \(i\choose j\)。关键点在于 \((2^u)^j\):在第一步中,我们已经选出了 \(j\) 个元素,所以在第二步的每次操作,都可以任意取 \(j\) 个元素的子集,故有系数 \((2^j)^v\)。

  向卷积形式靠拢:

\[g(u+v,i)=i!\sum_{j=0}^i\frac{2^{jv}g(u,j)}{j!}\cdot\frac{g(v,i-j)}{(i-j)!}
\]

  倍增处理 \(g\) 即可。复杂度 \(\mathcal{O}(n\log n\log m)\)。

代码

  这里用 MTT 实现任模 NTT。要特别留意每一步的取模嗷 qwq。

#include <cmath>
#include <cstdio>
#include <iostream> typedef long long LL; const int MAXN = 1 << 16, P = 1e9 + 7;
const double PI = acos ( -1 );
int n, m, len, lg, rev[MAXN + 5], fac[MAXN + 5], ifac[MAXN + 5], pwr[MAXN + 5];
int F[MAXN + 5], ans[MAXN + 5]; struct Complex {
double x, y;
Complex () {} Complex ( const double tx, const double ty ): x ( tx ), y ( ty ) {}
inline Complex operator + ( const Complex t ) const { return Complex ( x + t.x, y + t.y ); }
inline Complex operator - ( const Complex t ) const { return Complex ( x - t.x, y - t.y ); }
inline Complex operator * ( const Complex t ) const { return Complex ( x * t.x - y * t.y, x * t.y + y * t.x ); }
inline Complex operator / ( const double t ) const { return Complex ( x / t, y / t ); }
} omega[MAXN + 5]; inline void FFT ( const int n, Complex* A, const int tp ) {
for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) std::swap ( A[i], A[rev[i]] );
for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
for ( int j = 0; j < n; j += i ) {
for ( int k = 0; k < stp; ++ k ) {
Complex w ( omega[n / stp * k].x, tp * omega[n / stp * k].y );
Complex ev ( A[j + k] ), ov ( w * A[j + k + stp] );
A[j + k] = ev + ov, A[j + k + stp] = ev - ov;
}
}
}
if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = A[i] / n;
} inline void initFFT ( const int lg ) {
int n = 1 << lg;
for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lg >> 1 );
for ( int i = 1; i < n; i <<= 1 ) {
for ( int k = 0; k < i; ++ k ) {
omega[n / i * k] = Complex ( cos ( PI * k / i ), sin ( PI * k / i ) );
}
}
} inline void polyConv ( const int n, const int* A, const int* B, int* C ) {
static Complex highA[MAXN + 5], highB[MAXN + 5], lowA[MAXN + 5], lowB[MAXN + 5];
for ( int i = 0; i < n; ++ i ) {
lowA[i].x = A[i] & 0x7fff, highA[i].x = A[i] >> 15;
lowB[i].x = B[i] & 0x7fff, highB[i].x = B[i] >> 15;
lowA[i].y = highA[i].y = lowB[i].y = highB[i].y = 0;
}
FFT ( n, lowA, 1 ), FFT ( n, highA, 1 ), FFT ( n, lowB, 1 ), FFT ( n, highB, 1 );
for ( int i = 0; i < n; ++ i ) {
Complex la ( lowA[i] ), ha ( highA[i] ), lb ( lowB[i] ), hb ( highB[i] );
lowA[i] = ha * hb, highA[i] = la * hb, lowB[i] = ha * lb, highB[i] = la * lb;
}
FFT ( n, lowA, -1 ), FFT ( n, highA, -1 ), FFT ( n, lowB, -1 ), FFT ( n, highB, -1 );
for ( int i = 0; i < n; ++ i ) {
C[i] = ( ( 1ll << 30 ) % P * ( LL ( round ( lowA[i].x ) ) % P ) % P
+ ( LL ( round ( highA[i].x ) ) % P << 15 ) % P
+ ( LL ( round ( lowB[i].x ) ) % P << 15 ) % P
+ ( LL ( round ( highB[i].x ) ) % P ) ) % P;
}
} inline int qkpow ( int a, int b, const int p = P ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline void init ( const int n ) {
fac[0] = ifac[0] = pwr[0] = 1;
for ( int i = 1; i <= n; ++ i ) {
fac[i] = 1ll * i * fac[i - 1] % P;
pwr[i] = ( pwr[i - 1] << 1 ) % P;
}
ifac[n] = qkpow ( fac[n], P - 2 );
for ( int i = n - 1; i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % P;
} inline void add ( const int fn, const int fm ) {
if ( ! fn ) {
for ( int i = 0; i <= n; ++ i ) ans[i] = F[i];
return ;
}
static int A[MAXN + 5], B[MAXN + 5];
for ( int i = 0; i <= n; ++ i ) {
A[i] = 1ll * ans[i] * ifac[i] % P * qkpow ( 2, 1ll * i * fm % ( P - 1 ) ) % P;
B[i] = 1ll * F[i] * ifac[i] % P;
}
for ( int i = n + 1; i < len; ++ i ) A[i] = B[i] = 0;
polyConv ( len, A, B, ans );
for ( int i = 0; i <= n; ++ i ) ans[i] = 1ll * ans[i] * fac[i] % P;
for ( int i = n + 1; i < len; ++ i ) ans[i] = 0;
} inline void shift ( const int cur ) {
static int A[MAXN + 5], B[MAXN + 5];
for ( int i = 0; i <= n; ++ i ) {
A[i] = 1ll * F[i] * ifac[i] % P * qkpow ( 2, 1ll * i * cur % ( P - 1 ) ) % P;
B[i] = 1ll * F[i] * ifac[i] % P;
}
for ( int i = n + 1; i < len; ++ i ) A[i] = B[i] = 0;
polyConv ( len, A, B, F );
for ( int i = 0; i <= n; ++ i ) F[i] = 1ll * F[i] * fac[i] % P;
for ( int i = n + 1; i < len; ++ i ) F[i] = 0;
} int main () {
scanf ( "%d %d", &m, &n );
if ( m > n ) return puts ( "0" ), 0;
len = 1, lg = 0;
for ( ; len <= n << 1; len <<= 1, ++ lg );
initFFT ( lg ), init ( n );
for ( int i = 1; i <= n; ++ i ) F[i] = 1;
for ( int i = 0, cur = 0; 1 << i <= m; ++ i ) {
if ( ( m >> i ) & 1 ) add ( cur, 1 << i ), cur |= 1 << i;
shift ( 1 << i );
}
int sum = 0;
for ( int i = 0; i <= n; ++ i ) {
sum = ( sum + 1ll * ans[i] * fac[n] % P * ifac[i] % P * ifac[n - i] ) % P;
}
printf ( "%d\n", sum );
return 0;
}

Solution -「CF 623E」Transforming Sequence的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. android 报错 net::ERR_CLEARTEXT_NOT_PERMITTED

    这是从27版本后不允许使用http方式来请求 ,需要使用https 解决办法: 加入一个开关即可 android:usesCleartextTraffic="true"

  2. [未完] Linux 4.4 USB —— spiflash模拟usb大容量存储设备 调试记录 Gadget Mass Stroage

    linux 4.4 USB Gadget Mass Stroage 硬件平台: licheepi nano衍生 调试记录 驱动信息 │ This driver is a replacement for ...

  3. 在 python 项目中如何记录日志

    一. 概述 写本文的目的是我在写 python 项目的时候需要记录日志,我忘记怎么处理了,每次都需要去网上查一遍,好记性不如烂笔头, 这里把查阅的内容记录下来,方便以后查找. python 项目中记录 ...

  4. dubbo泛化引发的生产故障之dubbo隐藏的坑

    dubbo泛化引发的生产故障之dubbo隐藏的坑 上个月公司zk集群发生了一次故障,然后要求所有项目组自检有无使用Dubbo编程式/泛化调用,强制使用@Reference生成Consumer.具体原因 ...

  5. ClassCastException: java.util.Date cannot be cast to java.sql.Date

    解决办法 /** * 单个方法,作用,根据输入的day:yyyy-mm-dd格式的字符日期,将数据库中的该天所有数据更新为0 * 0表示假期 * @param day * @throws SQLExc ...

  6. 【刷题-LeetCode】236. Lowest Common Ancestor of a Binary Tree

    Lowest Common Ancestor of a Binary Tree Given a binary tree, find the lowest common ancestor (LCA) o ...

  7. 【小问题】为啥乱搞就不行,golang没安装在系统目录下,导致go get出现"package bytes: directory "/home/ahfu/go/src/bytes" is not using a known version control system"

    想在自己的账号下安装golang开发环境,于是这样配置: wget https://dl.google.com/go/go1.14.2.linux-amd64.tar.gz cd /home/ahfu ...

  8. 判断jquery类库是否加载,如未加载则加载。

    本人所有文章使用到的东西均在"渭南电脑维修网"网站中得以实现和应用,还请大家参考. 抄写别人网站的同时,N多不同的网站,势必有N多的css.javascript引用文件都会重复引用 ...

  9. gin中从reader读取数据数据

    package main import ( "fmt" "github.com/gin-gonic/gin" "net/http" &quo ...

  10. Python小练习-购物商城(一部分代码,基于python2.7.5)

    新手写作,用来练习与提高python编写.思考能力,有错误的地方请指正,谢谢! 第一次写博客,课题是一位大神的博客,本着练习的目的,就自己重写了一遍,有很多不足的地方,希望借博客记录下自己的成长:  ...