BZOJ4003[JLOI2015]城池攻占——可并堆
题目描述
小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池。
输入
第 1 行包含两个正整数 n;m,表示城池的数量和骑士的数量。
输出
输出 n + m 行,每行包含一个非负整数。其中前 n 行分别表示在城池 1 到 n 牺牲的骑士
样例输入
50 20 10 10 30
1 1 2
2 0 5
2 0 -10
1 0 10
20 2
10 3
40 4
20 4
35 5
样例输出
2
0
0
0
1
1
3
1
1
提示
对于 100% 的数据,1 <= n;m <= 300000; 1 <= fi<i; 1 <= ci <= n; -10^18 <= hi,vi,si <= 10^18;ai等于1或者2;当 ai =1 时,vi > 0;保证任何时候骑士战斗力值的绝对值不超过 10^18。
可以发现修改操作只有加一个数和乘一个正数,也就是说两个数的大小关系不会在同时修改后改变。那么我们可以对树上的每个节点维护一个可并堆(小根堆)然后自下而上合并上去。对于树上的一个节点,先将这个点的可并堆与子树的可并堆依次合并,然后判断堆顶是否大于该点的占领权值,如果小于就删除堆顶直到堆顶大于等于该点权值。之后将这个点的堆打上类似线段树的懒惰标记即可。注意乘法标记和加法标记的顺序问题。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll h[300010];
int f[300010];
int a[300010];
ll v[300010];
ll s[300010];
int c[300010];
int dis[300010];
int ls[300010];
int rs[300010];
int head[300010];
int to[300010];
int nex[300010];
ll num[300010];
ll sum[300010];
int root[300010];
int res[300010];
int dep[300010];
int ans[300010];
int tot;
int n,m;
void add(int x,int y)
{
nex[++tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void add(int rt,ll k,ll b)
{
if(!rt)
{
return ;
}
s[rt]*=k,s[rt]+=b;
sum[rt]*=k,num[rt]*=k,num[rt]+=b;
}
void pushdown(int rt)
{
add(ls[rt],sum[rt],num[rt]);
add(rs[rt],sum[rt],num[rt]);
sum[rt]=1,num[rt]=0;
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
pushdown(x);
pushdown(y);
if(s[x]>s[y])
{
swap(x,y);
}
rs[x]=merge(rs[x],y);
if(dis[ls[x]]<dis[rs[x]])
{
swap(ls[x],rs[x]);
}
dis[x]=dis[rs[x]]+1;
return x;
}
void dfs(int x)
{
for(int i=head[x];i;i=nex[i])
{
dep[to[i]]=dep[x]+1;
dfs(to[i]);
root[x]=merge(root[x],root[to[i]]);
}
if(!root[x])
{
return ;
}
while(s[root[x]]<h[x]&&root[x])
{
pushdown(root[x]);
ans[root[x]]=dep[c[root[x]]]-dep[x];
res[x]++;
root[x]=merge(ls[root[x]],rs[root[x]]);
}
if(a[x])
{
add(root[x],v[x],0);
}
else
{
add(root[x],1,v[x]);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld",&h[i]);
}
for(int i=2;i<=n;i++)
{
scanf("%d%d%lld",&f[i],&a[i],&v[i]);
add(f[i],i);
}
for(int i=1;i<=m;i++)
{
scanf("%lld%d",&s[i],&c[i]);
sum[i]=1ll;
root[c[i]]=merge(root[c[i]],i);
}
dep[1]=1;
dfs(1);
while(root[1])
{
ans[root[1]]=dep[c[root[1]]];
root[1]=merge(ls[root[1]],rs[root[1]]);
}
for(int i=1;i<=n;i++)
{
printf("%d\n",res[i]);
}
for(int i=1;i<=m;i++)
{
printf("%d\n",ans[i]);
}
}
BZOJ4003[JLOI2015]城池攻占——可并堆的更多相关文章
- 【BZOJ4003】[JLOI2015]城池攻占 可并堆
[BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...
- [bzoj4003][JLOI2015]城池攻占_左偏树
城池攻占 bzoj-4003 JLOI-2015 题目大意:一颗n个节点的有根数,m个有初始战斗力的骑士都站在节点上.每一个节点有一个standard,如果这个骑士的战斗力超过了这个门槛,他就会根据城 ...
- BZOJ4003 [JLOI2015]城池攻占 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4003 题意概括 题意有点复杂,直接放原题了. 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑 ...
- [BZOJ4003][JLOI2015]城池攻占(左偏树)
这题有多种做法,一种是倍增预处理出每个点往上走2^i步最少需要的初始战斗力,一种是裸的启发式合并带标记splay. 每个点合并能攻占其儿子的所有骑士,删去所有无法攻占这个城市的骑士并记录答案. 注意到 ...
- BZOJ4003 [JLOI2015]城池攻占
这题有两种做法来着... 第一种就是一开始想到的比较不靠谱,不过貌似可以过掉: 看从$1$号节点开始到$p$号节点最大需要的体力,记录单调上升的体力,询问的时候二分跳着走就可以了 不过精度问题还有可能 ...
- BZOJ4003 JLOI2015城池攻占
用左偏树模拟攻占的过程,维护最小值,最多入和出m次,每次log复杂度. #include<bits/stdc++.h> using namespace std; ; typedef lon ...
- BZOJ_4003_[JLOI2015]城池攻占_可并堆
BZOJ_4003_[JLOI2015]城池攻占_可并堆 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 ...
- [洛谷P3261] [JLOI2015]城池攻占(左偏树)
不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...
- BZOJ-4003:城池攻占(可并堆+lazy标记)
小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 到 n 的整数表示.除 号城池外,城池 i 会受到另一座城池 fi 的管辖, 其中 fi <i.也就是 ...
随机推荐
- MySQL root密码忘记,原来还有更优雅的解法!
一直以来,对于MySQL root密码的忘记,以为只有一种解法-skip-grant-tables. 问了下群里的大咖,第一反应也是skip-grant-tables.通过搜索引擎简单搜索了下,无论是 ...
- 来自后端的突袭? --开包即食的教程带你浅尝最新开源的C# Web引擎 Blazor
在今年年初, 恰逢新春佳节临近的时候. 微软给全球的C#开发者们, 着实的送上了一分惊喜. 微软正式开源Blazor ,将.NET带回到浏览器. 这个小惊喜, 迅速的在dotnet开发者中间传开了. ...
- SQL 显示表名显示列名
显示表名:show 表名: 显示列(Field)名:show columns from 表名:
- 十九、多文件上传(ajaxFileupload实现多文件上传功能)
来源于https://www.jb51.net/article/128647.htm 打开google 搜索"ajaxFileupload' ‘多文件上传"可以搜到许许多多类似的, ...
- Leetcode 686 Repeated String Match
Given two strings A and B, find the minimum number of times A has to be repeated such that B is a su ...
- CSS scroll-behavior属性: 滚动框指定滚动行为
概念 当用户手动导航或者 CSSOM scrolling API 触发滚动操作时,CSS 属性 scroll-behavior 为一个滚动框指定滚动行为,其他任何的滚动,例如那些由于用户行为而产生的滚 ...
- 用python实现一个回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- 非常详细的Docker学习教程
一.Docker 简介 Docker 两个主要部件: Docker: 开源的容器虚拟化平台 Docker Hub: 用于分享.管理 Docker 容器的 Docker SaaS 平台 -- Docke ...
- h5小功能_classList和自定义属性data
###1.classList返回一个对象集 通过obj.classList.add()或obj.classList.remove()可操作对象的class属性值 classList.toggle( ) ...
- Dart语法基础
hello world // Define a function. printNumber(num aNumber) { print('The number is $aNumber.'); // Pr ...