题目链接:[USACO07JAN]Cow School

一开始还以为是一道分数规划,后来发现自己看错题了,

然后成功入坑

题目是要求先按照$t_i/p_i$从小到大排序,然后删除前$d$个后求出剩下的$\frac{\sum^{n-d+1}_{i=1}t_i}{\sum^{n-d+1}_{i=1}p_i}$,如果当前的删除方法不是最优的(即能删除其它$d$个数使原式的值变大的话),则输出这个$d$

首先排序自不必说,排完序之后基础的式子的值也就求出来了

那么问题就在于如何判断当前的删除方法是不是最优的

为了方便我们将数据从大到小排序

我们假设当前取了前$k$个最大的

并设$T=t_1+t_2+\cdots+t_k,P=p_1+p_2+\cdots+p_k$

那么题目就是求是否存在$i,j$,满足$\frac{T-t_i+t_j}{P-p_i+p_j}>\frac{T}{P}$(其中$i\in \lbrace1,2,\cdots,k \rbrace,j\notin \lbrace1,2,\cdots,k \rbrace$)

将式子变形得$P*t_i-T*p_i<P*t_j-T*t_i$

所以我们只要找出$P*t_i-T*p_i$的$min$,以及$P*t_j-T*p_j$的$max$

这时我们再来算一算时间复杂度

我们在枚举前$k$个最大的数时需要$O(n)$的时间,

因此我们在处理最大值与最小值时只能用$O(logn)$的时间复杂度

但由于我们的$与T_i与P_i$是已经排好序的,所以我们可以用二分来处理这个最大值与最小值

感觉洛谷上这题给黑题是不是太高看了(逃

 #include<iostream>
#include<string>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
using namespace std;
const long long inf=(long long)1e18;
struct node{
long long t,p;
}a[],b[];
int n,ans[];
long long mind[],maxd[]; bool cmp(node x,node y)
{
return x.t*y.p>x.p*y.t;
} void getmin(int l,int r,int pl,int pr)
{
int i,mid=(l+r)>>,pos;
for (i=pl;i<=mid&&i<=pr;i++)
{
long long tmp=a[i].t*b[mid].p-a[i].p*b[mid].t;
if (tmp<mind[mid]) {mind[mid]=tmp;pos=i;}
}
if (l<mid) getmin(l,mid-,pl,pos);
if (r>mid) getmin(mid+,r,pos,pr);
} void getmax(int l,int r,int pl,int pr)
{
int i,pos,mid=(l+r)>>;
for (i=pr;i>mid&&i>=pl;i--)
{
long long tmp=a[i].t*b[mid].p-a[i].p*b[mid].t;
if (tmp>maxd[mid]) {maxd[mid]=tmp;pos=i;}
}
if (l<mid) getmax(l,mid-,pl,pos);
if (r>mid) getmax(mid+,r,pos,pr);
} int main()
{
scanf("%d",&n);
int i;
for (i=;i<=n;i++) scanf("%lld%lld",&a[i].t,&a[i].p);
sort(a+,a++n,cmp);
b[].t=;b[].p=;
for (i=;i<=n;i++)
{
b[i].t=b[i-].t+a[i].t;
b[i].p=b[i-].p+a[i].p;
}
for (i=;i<=n;i++) {mind[i]=inf;maxd[i]=-inf;}
getmin(,n-,,n);getmax(,n-,,n);
int pos=;
for (i=;i<n;i++) if (mind[i]<maxd[i]) ans[++pos]=n-i;
printf("%d\n",pos);
for (i=pos;i>=;i--) printf("%d\n",ans[i]);
return ;
}

[USACO07JAN]Cow School的更多相关文章

  1. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  2. bzoj1635 / P2879 [USACO07JAN]区间统计Tallest Cow

    P2879 [USACO07JAN]区间统计Tallest Cow 差分 对于每个限制$(l,r)$,我们建立一个差分数组$a[i]$ 使$a[l+1]--,a[r]++$,表示$(l,r)$区间内的 ...

  3. 洛谷P2879 [USACO07JAN]区间统计Tallest Cow

    To 洛谷.2879 区间统计 题目描述 FJ's N (1 ≤ N ≤ 10,000) cows conveniently indexed 1..N are standing in a line. ...

  4. [Luogu2879][USACO07JAN]区间统计Tallest Cow

    题目描述 FJ's N (1 ≤ N ≤ 10,000) cows conveniently indexed 1..N are standing in a line. Each cow has a p ...

  5. P2877 [USACO07JAN]牛校Cow School

    传送门 $01$规划 $01$规划优质讲解:传送门 考虑先将每一科按 $t/p$ 从小到大排序,枚举每一个 $D$(删除的考试数量) 显然一开始的成绩是 $\frac{\sum_{i=d+1}^nt[ ...

  6. 洛谷 P2879 [USACO07JAN]区间统计Tallest Cow

    传送门 题目大意: n头牛,其中最高身高为h,给出r对关系(x,y) 表示x能看到y,当且仅当y>=x并且x和y中间的牛都比 他们矮的时候,求每头牛的最高身高. 题解:贪心+差分 将每头牛一开始 ...

  7. 题解 P2879 【[USACO07JAN]区间统计Tallest Cow】

    题目链接: https://www.luogu.org/problemnew/show/P2879 思路: 先不管最大高度,我们读入一对x,y.说明,x+1~y-1之间牛的身高都小于x,y. 然后不妨 ...

  8. [USACO07JAN]区间统计Tallest Cow

    前缀和 sum[i]表示前i个数的和 每次读入a[i]的时候 sum[i] = sum[i - 1] + a[i]; 查询l ~ r区间的和: sum[r] - sum[l - 1] 差分 即前缀和的 ...

  9. 【洛谷】P2880 [USACO07JAN]平衡的阵容Balanced Lineup(st表)

    题目背景 题目描述: 每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连 ...

随机推荐

  1. Python入门-从HelloWorld开始

    前言 最近在招聘网上看了许多公司的招聘要求,发现很多公司希望求职者能会Python,特别是一些自动化测试的职位,以前对Python只是介于听说或是一些简单的了解,所以既然市场有需求,那么我们就来学习一 ...

  2. sql面试学到新内容

    1.事物的保存点 MYSQL可以让我们对事务进行部分回滚,就是在事务里调用SAVEPOINT语句来设置一些命名标记.如果想要回滚到那个标记点位置,需要使用ROLLBACK语句来指定哪个保存点. mys ...

  3. python-Requests + 正则表达式爬取猫眼电影

    github: https://github.com/LXL-YAN/Requests_Regular-Expressions-Crawl-CatEye-Movies

  4. Rikka with Subset HDU - 6092 (DP+组合数)

    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...

  5. Karen and Game CodeForces - 816C (暴力+构造)

    On the way to school, Karen became fixated on the puzzle game on her phone! The game is played as fo ...

  6. rest-framework解析器,url控制,分页,响应器,渲染器,版本控制

    解析器 1.json解析器 发一个json格式的post请求.后台打印: request_data---> {'title': '北京折叠'} request.POST---> <Q ...

  7. 3proxy.cfg 配置文件解析

    最新配置文件的man文档所在位置: /程序目录/doc/html/man3/3proxy.cfg.3.html 官网: https://3proxy.ru/ Download 3proxy tiny ...

  8. WPF中任务栏只显示主窗口

    我们在用WPF开发的时候,常常会遇到在主窗口打开的情况下,去显示子窗口,而此时任务栏同时显示主窗口与子窗口.这样看起来很不美观.所以在弹出子窗口之前,设置它的几个相应属性,便不会出现这种问题了. // ...

  9. [官网]Linux版本历史

    This is a list of links to every changelog. https://kernelnewbies.org/LinuxVersions 总结一下 2.6.x 存在了八年 ...

  10. Baby-Step-Giant-Step 很酷的算法

    Baby-Step-Giant-Step BSGS算法用于解决形如:      A  ^  x  ≡  B  (  mod  C  ) 的问题.  学这个算法前需要具备以下知识:快速幂取模.扩展欧几里 ...