原来指望sha1 这种烂大街的算法 不会出什么幺蛾子 结果《linux C编程实战Code》bt章节的sha1 代码 我在linux和windows下的结果不一样

然后用了哈希工具查看了下 发现结果也不一样。 windows和linux自带工具是一致的,但是和《linux C编程实战Code》的代码 无论在windows还是linux下都不一致

这里记录下新得代码 以后备用 (unbuntu wndows7 下执行 计算结果一致)

 /*
* sha1.h
*
* Description:
* This is the header file for code which implements the Secure
* Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
* April 17, 1995.
*
* Many of the variable names in this code, especially the
* single character names, were used because those were the names
* used in the publication.
*
* Please read the file sha1.c for more information.
*
*/ #ifndef _SHA1_H_
#define _SHA1_H_
#include <stdint.h>
/*
* If you do not have the ISO standard stdint.h header file, then you
* must typdef the following:
* name meaning
* uint32_t unsigned 32 bit integer
* uint8_t unsigned 8 bit integer (i.e., unsigned char)
* int_least16_t integer of >= 16 bits
*
*/
#ifndef _SHA_enum_
#define _SHA_enum_
enum
{
shaSuccess = ,
shaNull, /* Null pointer parameter */
shaInputTooLong, /* input data too long */
shaStateError /* called Input after Result */
};
#endif
#define SHA1HashSize 20
/*
* This structure will hold context information for the SHA-1
* hashing operation
*/
typedef struct SHA1Context
{
uint32_t Intermediate_Hash[SHA1HashSize / ]; /* Message Digest */
uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */
/* Index into message block array */
int_least16_t Message_Block_Index;
uint8_t Message_Block[]; /* 512-bit message blocks */
int Computed; /* Is the digest computed? */
int Corrupted; /* Is the message digest corrupted? */
} SHA1Context; /*
* Function Prototypes
*/ int SHA1Reset(SHA1Context *);
int SHA1Input(SHA1Context *, const uint8_t *, unsigned int);
int SHA1Result(SHA1Context *, uint8_t Message_Digest[SHA1HashSize]); #endif

sha1.h

 /*
* sha1.c
*
* Description:
* This file implements the Secure Hashing Algorithm 1 as
* defined in FIPS PUB 180-1 published April 17, 1995.
*
* The SHA-1, produces a 160-bit message digest for a given
* data stream. It should take about 2**n steps to find a
* message with the same digest as a given message and
* 2**(n/2) to find any two messages with the same digest,
* when n is the digest size in bits. Therefore, this
* algorithm can serve as a means of providing a
* "fingerprint" for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code
* uses <stdint.h> (included via "sha1.h" to define 32 and 8
* bit unsigned integer types. If your C compiler does not
* support 32 bit unsigned integers, this code is not
* appropriate.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. Although SHA-1 allows a message digest to be generated
* for messages of any number of bits less than 2^64, this
* implementation only works with messages with a length that is
* a multiple of the size of an 8-bit character.
*
*/ #include "SHA1.h" #ifdef __cplusplus
extern "C"
{
#endif /*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (-(bits))))
/* Local Function Prototyptes */
void SHA1PadMessage(SHA1Context *);
void SHA1ProcessMessageBlock(SHA1Context *);
/*
* SHA1Reset
*
* Description:
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Reset(SHA1Context *context)//初始化状态
{
if (!context)
{
return shaNull;
}
context->Length_Low = ;
context->Length_High = ;
context->Message_Block_Index = ;
context->Intermediate_Hash[] = 0x67452301;//取得的HASH结果(中间数据)
context->Intermediate_Hash[] = 0xEFCDAB89;
context->Intermediate_Hash[] = 0x98BADCFE;
context->Intermediate_Hash[] = 0x10325476;
context->Intermediate_Hash[] = 0xC3D2E1F0;
context->Computed = ;
context->Corrupted = ;
return shaSuccess;
} /*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message_Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Result(SHA1Context *context, uint8_t Message_Digest[SHA1HashSize])
{
int i;
if (!context || !Message_Digest)
{
return shaNull;
}
if (context->Corrupted)
{
return context->Corrupted;
}
if (!context->Computed)
{
SHA1PadMessage(context);
for (i = ; i < ; ++i)
{
/* message may be sensitive, clear it out */
context->Message_Block[i] = ;
}
context->Length_Low = ; /* and clear length */
context->Length_High = ;
context->Computed = ;
}
for (i = ; i < SHA1HashSize; ++i)
{
Message_Digest[i] = context->Intermediate_Hash[i >> ]
>> * ( - (i & 0x03));
}
return shaSuccess;
} /*
* SHA1Input
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* sha Error Code.
*
*/ int SHA1Input(SHA1Context *context, const uint8_t *message_array, unsigned length)
{
if (!length)
{
return shaSuccess;
}
if (!context || !message_array)
{
return shaNull;
}
if (context->Computed)
{
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted)
{
return context->Corrupted;
}
while (length-- && !context->Corrupted)
{
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF);
context->Length_Low += ;
if (context->Length_Low == )
{
context->Length_High++;
if (context->Length_High == )
{
/* Message is too long */
context->Corrupted = ;
}
}
if (context->Message_Block_Index == )
{
SHA1ProcessMessageBlock(context);
}
message_array++;
}
return shaSuccess;
} /*
* SHA1ProcessMessageBlock
*
* Description:
* This function will process the next 512 bits of the message
* stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*/ void SHA1ProcessMessageBlock(SHA1Context *context)
{
const uint32_t K[] = { /* Constants defined in SHA-1 */
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for (t = ; t < ; t++)
{
W[t] = context->Message_Block[t * ] << ;
W[t] |= context->Message_Block[t * + ] << ;
W[t] |= context->Message_Block[t * + ] << ;
W[t] |= context->Message_Block[t * + ];
}
for (t = ; t < ; t++)
{
W[t] = SHA1CircularShift(, W[t - ] ^ W[t - ] ^ W[t - ] ^ W[t - ]);
}
A = context->Intermediate_Hash[];
B = context->Intermediate_Hash[];
C = context->Intermediate_Hash[];
D = context->Intermediate_Hash[];
E = context->Intermediate_Hash[];
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) +
((B & C) | ((~B) & D)) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) + (B ^ C ^ D) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) + (B ^ C ^ D) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
context->Intermediate_Hash[] += A;
context->Intermediate_Hash[] += B;
context->Intermediate_Hash[] += C;
context->Intermediate_Hash[] += D;
context->Intermediate_Hash[] += E;
context->Message_Block_Index = ;
} /*
* SHA1PadMessage
*
* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a ’1’. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* ProcessMessageBlock: [in]
* The appropriate SHA*ProcessMessageBlock function
* Returns:
* Nothing.
*
*/ void SHA1PadMessage(SHA1Context *context)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index > )
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while (context->Message_Block_Index < )
{
context->Message_Block[context->Message_Block_Index++] = ;
}
SHA1ProcessMessageBlock(context);
while (context->Message_Block_Index < )
{
context->Message_Block[context->Message_Block_Index++] = ;
}
}
else
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while (context->Message_Block_Index < )
{
context->Message_Block[context->Message_Block_Index++] = ;
}
} /*
* Store the message length as the last 8 octets
*/
context->Message_Block[] = context->Length_High >> ;
context->Message_Block[] = context->Length_High >> ;
context->Message_Block[] = context->Length_High >> ;
context->Message_Block[] = context->Length_High;
context->Message_Block[] = context->Length_Low >> ;
context->Message_Block[] = context->Length_Low >> ;
context->Message_Block[] = context->Length_Low >> ;
context->Message_Block[] = context->Length_Low;
SHA1ProcessMessageBlock(context);
} #ifdef __cplusplus
}
#endif

sha1.c

sha1 算法源码的更多相关文章

  1. Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结

    Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...

  2. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  3. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  4. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

  5. diff.js 列表对比算法 源码分析

    diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Arra ...

  6. [Spark内核] 第34课:Stage划分和Task最佳位置算法源码彻底解密

    本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这 ...

  7. zookeeper集群搭建及Leader选举算法源码解析

    第一章.zookeeper概述 一.zookeeper 简介 zookeeper 是一个开源的分布式应用程序协调服务器,是 Hadoop 的重要组件. zooKeeper 是一个分布式的,开放源码的分 ...

  8. 基于单层决策树的AdaBoost算法源码

    基于单层决策树的AdaBoost算法源码 Mian.py # -*- coding: utf-8 -*- # coding: UTF-8 import numpy as np from AdaBoos ...

  9. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

随机推荐

  1. docker:学习笔记

    docker run -itd --net=none 22565cef72c2 /usr/sbin/sshd -Dpipework br0 5a3e7bab4c5c5260a93e153aa7fec3 ...

  2. LeetCode 142. Linked List Cycle II 判断环入口的位置 C++/Java

    Given a linked list, return the node where the cycle begins. If there is no cycle, return null. To r ...

  3. void类型及void指针(转载)

    转载 https://www.cnblogs.com/pengyingh/articles/2407267.html 2.void的含义 void的字面意思是“无类型”,void *则为“无类型指针” ...

  4. 使用Jquery easyui datagrid请求servlet没有反应的解决办法

    在Jsp页面中把servlet请求地址写全,我已经将要注意的地方红色加粗了.我的jsp页面是新建的一个文件夹. <%@ page language="java" conten ...

  5. redis bind的坑

    启动redis时,发现外网访问不了 检查以下方面 1. ping redis 的ip 2. 检查防火墙端口是否开放3. bind bind bind指的是绑定哪个ip可以访问 bind 要填写你自己r ...

  6. python module -- sys

    sys模块主要是用于提供对python解释器相关的操作 http://www.cnblogs.com/pycode/p/sysos.html http://blog.csdn.net/pipisorr ...

  7. python之路:数据类型初识

    python开发之路:数据类型初识 数据类型非常重要.不过我这么说吧,他不重要我还讲个屁? 好,既然有人对数据类型不了解,我就讲一讲吧.反正这东西不需要什么python代码. 数据类型我讲的很死板.. ...

  8. Innodb引擎中Count(*)

    select count(*)是MySQL中用于统计记录行数最常用的方法,count方法可以返回表内精确的行数. 在某些索引下是好事,但是如果表中有主键,count(*)的速度就会很慢,特别在千万记录 ...

  9. Linux命令:typeset

    语法 typeset [-afFgrxilnrtux] [-p] [name[=value] …] 说明 declare的同义词,提供它只是为了保持和ksh兼容.

  10. LevelDB源码分析-Write

    Write LevelDB提供了write和put两个接口进行插入操作,但是put实际上是调用write实现的,所以我在这里只分析write函数: Status DBImpl::Write(const ...