原来指望sha1 这种烂大街的算法 不会出什么幺蛾子 结果《linux C编程实战Code》bt章节的sha1 代码 我在linux和windows下的结果不一样

然后用了哈希工具查看了下 发现结果也不一样。 windows和linux自带工具是一致的,但是和《linux C编程实战Code》的代码 无论在windows还是linux下都不一致

这里记录下新得代码 以后备用 (unbuntu wndows7 下执行 计算结果一致)

 /*
* sha1.h
*
* Description:
* This is the header file for code which implements the Secure
* Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
* April 17, 1995.
*
* Many of the variable names in this code, especially the
* single character names, were used because those were the names
* used in the publication.
*
* Please read the file sha1.c for more information.
*
*/ #ifndef _SHA1_H_
#define _SHA1_H_
#include <stdint.h>
/*
* If you do not have the ISO standard stdint.h header file, then you
* must typdef the following:
* name meaning
* uint32_t unsigned 32 bit integer
* uint8_t unsigned 8 bit integer (i.e., unsigned char)
* int_least16_t integer of >= 16 bits
*
*/
#ifndef _SHA_enum_
#define _SHA_enum_
enum
{
shaSuccess = ,
shaNull, /* Null pointer parameter */
shaInputTooLong, /* input data too long */
shaStateError /* called Input after Result */
};
#endif
#define SHA1HashSize 20
/*
* This structure will hold context information for the SHA-1
* hashing operation
*/
typedef struct SHA1Context
{
uint32_t Intermediate_Hash[SHA1HashSize / ]; /* Message Digest */
uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */
/* Index into message block array */
int_least16_t Message_Block_Index;
uint8_t Message_Block[]; /* 512-bit message blocks */
int Computed; /* Is the digest computed? */
int Corrupted; /* Is the message digest corrupted? */
} SHA1Context; /*
* Function Prototypes
*/ int SHA1Reset(SHA1Context *);
int SHA1Input(SHA1Context *, const uint8_t *, unsigned int);
int SHA1Result(SHA1Context *, uint8_t Message_Digest[SHA1HashSize]); #endif

sha1.h

 /*
* sha1.c
*
* Description:
* This file implements the Secure Hashing Algorithm 1 as
* defined in FIPS PUB 180-1 published April 17, 1995.
*
* The SHA-1, produces a 160-bit message digest for a given
* data stream. It should take about 2**n steps to find a
* message with the same digest as a given message and
* 2**(n/2) to find any two messages with the same digest,
* when n is the digest size in bits. Therefore, this
* algorithm can serve as a means of providing a
* "fingerprint" for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code
* uses <stdint.h> (included via "sha1.h" to define 32 and 8
* bit unsigned integer types. If your C compiler does not
* support 32 bit unsigned integers, this code is not
* appropriate.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. Although SHA-1 allows a message digest to be generated
* for messages of any number of bits less than 2^64, this
* implementation only works with messages with a length that is
* a multiple of the size of an 8-bit character.
*
*/ #include "SHA1.h" #ifdef __cplusplus
extern "C"
{
#endif /*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (-(bits))))
/* Local Function Prototyptes */
void SHA1PadMessage(SHA1Context *);
void SHA1ProcessMessageBlock(SHA1Context *);
/*
* SHA1Reset
*
* Description:
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Reset(SHA1Context *context)//初始化状态
{
if (!context)
{
return shaNull;
}
context->Length_Low = ;
context->Length_High = ;
context->Message_Block_Index = ;
context->Intermediate_Hash[] = 0x67452301;//取得的HASH结果(中间数据)
context->Intermediate_Hash[] = 0xEFCDAB89;
context->Intermediate_Hash[] = 0x98BADCFE;
context->Intermediate_Hash[] = 0x10325476;
context->Intermediate_Hash[] = 0xC3D2E1F0;
context->Computed = ;
context->Corrupted = ;
return shaSuccess;
} /*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message_Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Result(SHA1Context *context, uint8_t Message_Digest[SHA1HashSize])
{
int i;
if (!context || !Message_Digest)
{
return shaNull;
}
if (context->Corrupted)
{
return context->Corrupted;
}
if (!context->Computed)
{
SHA1PadMessage(context);
for (i = ; i < ; ++i)
{
/* message may be sensitive, clear it out */
context->Message_Block[i] = ;
}
context->Length_Low = ; /* and clear length */
context->Length_High = ;
context->Computed = ;
}
for (i = ; i < SHA1HashSize; ++i)
{
Message_Digest[i] = context->Intermediate_Hash[i >> ]
>> * ( - (i & 0x03));
}
return shaSuccess;
} /*
* SHA1Input
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* sha Error Code.
*
*/ int SHA1Input(SHA1Context *context, const uint8_t *message_array, unsigned length)
{
if (!length)
{
return shaSuccess;
}
if (!context || !message_array)
{
return shaNull;
}
if (context->Computed)
{
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted)
{
return context->Corrupted;
}
while (length-- && !context->Corrupted)
{
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF);
context->Length_Low += ;
if (context->Length_Low == )
{
context->Length_High++;
if (context->Length_High == )
{
/* Message is too long */
context->Corrupted = ;
}
}
if (context->Message_Block_Index == )
{
SHA1ProcessMessageBlock(context);
}
message_array++;
}
return shaSuccess;
} /*
* SHA1ProcessMessageBlock
*
* Description:
* This function will process the next 512 bits of the message
* stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*/ void SHA1ProcessMessageBlock(SHA1Context *context)
{
const uint32_t K[] = { /* Constants defined in SHA-1 */
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for (t = ; t < ; t++)
{
W[t] = context->Message_Block[t * ] << ;
W[t] |= context->Message_Block[t * + ] << ;
W[t] |= context->Message_Block[t * + ] << ;
W[t] |= context->Message_Block[t * + ];
}
for (t = ; t < ; t++)
{
W[t] = SHA1CircularShift(, W[t - ] ^ W[t - ] ^ W[t - ] ^ W[t - ]);
}
A = context->Intermediate_Hash[];
B = context->Intermediate_Hash[];
C = context->Intermediate_Hash[];
D = context->Intermediate_Hash[];
E = context->Intermediate_Hash[];
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) +
((B & C) | ((~B) & D)) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) + (B ^ C ^ D) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
for (t = ; t < ; t++)
{
temp = SHA1CircularShift(, A) + (B ^ C ^ D) + E + W[t] + K[];
E = D;
D = C;
C = SHA1CircularShift(, B);
B = A;
A = temp;
}
context->Intermediate_Hash[] += A;
context->Intermediate_Hash[] += B;
context->Intermediate_Hash[] += C;
context->Intermediate_Hash[] += D;
context->Intermediate_Hash[] += E;
context->Message_Block_Index = ;
} /*
* SHA1PadMessage
*
* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a ’1’. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* ProcessMessageBlock: [in]
* The appropriate SHA*ProcessMessageBlock function
* Returns:
* Nothing.
*
*/ void SHA1PadMessage(SHA1Context *context)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index > )
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while (context->Message_Block_Index < )
{
context->Message_Block[context->Message_Block_Index++] = ;
}
SHA1ProcessMessageBlock(context);
while (context->Message_Block_Index < )
{
context->Message_Block[context->Message_Block_Index++] = ;
}
}
else
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while (context->Message_Block_Index < )
{
context->Message_Block[context->Message_Block_Index++] = ;
}
} /*
* Store the message length as the last 8 octets
*/
context->Message_Block[] = context->Length_High >> ;
context->Message_Block[] = context->Length_High >> ;
context->Message_Block[] = context->Length_High >> ;
context->Message_Block[] = context->Length_High;
context->Message_Block[] = context->Length_Low >> ;
context->Message_Block[] = context->Length_Low >> ;
context->Message_Block[] = context->Length_Low >> ;
context->Message_Block[] = context->Length_Low;
SHA1ProcessMessageBlock(context);
} #ifdef __cplusplus
}
#endif

sha1.c

sha1 算法源码的更多相关文章

  1. Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结

    Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...

  2. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  3. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  4. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

  5. diff.js 列表对比算法 源码分析

    diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Arra ...

  6. [Spark内核] 第34课:Stage划分和Task最佳位置算法源码彻底解密

    本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这 ...

  7. zookeeper集群搭建及Leader选举算法源码解析

    第一章.zookeeper概述 一.zookeeper 简介 zookeeper 是一个开源的分布式应用程序协调服务器,是 Hadoop 的重要组件. zooKeeper 是一个分布式的,开放源码的分 ...

  8. 基于单层决策树的AdaBoost算法源码

    基于单层决策树的AdaBoost算法源码 Mian.py # -*- coding: utf-8 -*- # coding: UTF-8 import numpy as np from AdaBoos ...

  9. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

随机推荐

  1. Logparser介绍

    原文链接:https://www.cnblogs.com/Jerseyblog/p/3986591.html Logparser是一款非常强大的日志分析软件,可以帮助你详细的分析网站日志.是所有数据分 ...

  2. Open CDN 2.0管控端和节点端安装

    原文:http://www.safecdn.cn/cdn/2018/12/opencdn-2-0/1076.html OpenCDN是一套快速部署CDN加速的工具,针对专门提供CDN加速服务的企业或对 ...

  3. python之工厂函数

    python之工厂函数 本人也是小白一个,最近在学习python工厂函数时随便在网上搜了搜,发现许多人对工厂函数的理解存在误区,同时也是为了整理和记录自己的思路,写下本片博文. 工厂函数顾名思义就是一 ...

  4. Spring的回滚问题

    再说下声明式事务和注解事务回滚的原理:当被切面切中或者是加了注解的方法中抛出了RuntimeException异常时,Spring会进行事务回滚.默认情况下是捕获到方法的RuntimeExceptio ...

  5. phpstorm 实现SFTP开发,线上线下同步(实时更新代码)

    https://blog.csdn.net/zz_lkw/article/details/79711746

  6. (ZT)算法杂货铺——k均值聚类(K-means)

    https://www.cnblogs.com/leoo2sk/category/273456.html 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先 ...

  7. 安装Python的numpy库

    1. 检查是否有pip.exe, 如果没有,可以到 https://pypi.org/project/pip/#files下载 2. 安装好pip后,在安装numpy之前,查看是否安装成功,pip - ...

  8. Java环境变量PATH和CLASSPATH

    Java开发中常用到环境变量的配置,下面简单介绍下Java中经常配置的环境变量:PATH和CLASSPATH. 1.PATH环境变量 1.1 作用简介 安装完JDK(Java Development ...

  9. 大数据架构工具hadoop

    Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据.它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储. “90%的世界数据在过 ...

  10. 软件工程小组讨论设计NABCD

    项目名称:失物招领平台 项目工作小组:冰淇淋队 项目简介:目前同学们丢了东西都qq空间转发或者某个特定的qq群发消息,qq空间转发浪费了别人的时间,qq群发消息也浪费了别人的时间.怎么样才能浪费最少的 ...