题目大意:给定整数 \(N\),求\(1\le x,y\le N\) 且 \(gcd(x,y)\) 为素数的数对 \((x,y)\) 有多少对。

题解:

\[\sum_{p \in \text { prime }} \sum_{i=1}^{n} \sum_{j=1}^{n}[\operatorname{gcd}(i, j)=p]
\]

\[\sum_{p \in \text { prime }} \sum_{i=1}^{\left\lfloor\frac{n}{p}\right\rfloor} \sum_{j=1}^{\left\lfloor\frac{n}{p}\right\rfloor}[\operatorname{gcd}(i, j)=1]
\]

\[\sum_{p \in \text { prime }}\left(\sum_{i=1}^{\left\lfloor\frac{n}{p}\right\rfloor}\left(2 \sum_{j=1}^{i}[\operatorname{gcd}(i, j)=1]\right)-1\right)
\]

\[\sum_{p \in \text { prime }}\left(2 \sum_{i=1}^{\left\lfloor\frac{n}{p}\right\rfloor} \varphi(i)-1\right)
\]

因此,利用线性筛求出欧拉函数的前缀和,直接枚举素数计算答案贡献即可。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e7+10; int n,prime[maxn],tot;
ll phi[maxn],sum[maxn];
bool vis[maxn]; void sieve(){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i])prime[++tot]=i,phi[i]=i-1;
for(int j=1;i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+phi[i];
} int main(){
scanf("%d",&n);
sieve();
ll ans=0;
for(int i=1;i<=tot;i++)ans+=(2*sum[n/prime[i]]-1);
printf("%lld\n",ans);
return 0;
}

【洛谷P2568】GCD的更多相关文章

  1. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  2. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  3. 洛谷 P2568 GCD

    https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x, ...

  4. 洛谷 - P2568 - GCD - 欧拉函数

    https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...

  5. [洛谷P2568]GCD

    题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y ...

  6. 洛谷 P2568 GCD(莫比乌斯反演)

    题意:$\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\epsilon prime]$. 对于这类题一般就是枚举gcd,可得: =$\sum_{d\epsilon prim ...

  7. 洛谷 P2568 GCD 题解

    原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) ...

  8. 洛谷P2568 GCD(莫比乌斯反演)

    传送门 这题和p2257一样……不过是n和m相同而已…… 所以虽然正解是欧拉函数然而直接改改就行了所以懒得再码一遍了2333 不过这题卡空间,记得mu开short,vis开bool //minamot ...

  9. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  10. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

随机推荐

  1. 模态框 modal data-toggle data-target

    模态框 modal data-toggle data-target   1. Data-*属性 模态框(modal) 触发事件(data-toggle) 触发对象data-target(ID 或类) ...

  2. Angular 自定义过滤器

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...

  3. Linux基础学习(15)--启动管理

    第十五章——启动管理 一.CentOS 6.x启动管理 1.系统运行级别: (1)运行级别: (2)运行级别命令: (3)系统默认运行级别: 2.系统启动过程: . 二.启动引导程序grub 1.Gr ...

  4. StatefulSet

    StatefulSet: 1.稳点且唯一的网络标识符 2.稳点且持久的存储 3.有序.平滑的部署和扩展 4.有序.平滑的删除和终止 5.有序的滚动更新 三个组件组成:headless(无头服务)    ...

  5. linux中一些特殊的中文文件不能删除问题

    例: [root@iZ2zecl4i8oy1rvs00dqzeZ tmp]# ,),(,,' [root@iZ2zecl4i8oy1rvs00dqzeZ tmp]# echo "rm -rf ...

  6. 集合之LinkedHashSet(含JDK1.8源码分析)

    一.前言 上篇已经分析了Set接口下HashSet,我们发现其操作都是基于hashMap的,接下来看LinkedHashSet,其底层实现都是基于linkedHashMap的. 二.linkedHas ...

  7. 使用composer安装php的相关框架

    使用composer来安装php的相关框架,不需要事先准备composer.json以及conmposer.lock以及composer.phar等文件: 直接在项目根目录下是使用composer r ...

  8. Java使用RabbitMQ之整合Spring(生产者)

    依赖包 <!--RabbitMQ集成spring--> <!-- https://mvnrepository.com/artifact/org.springframework.amq ...

  9. Nginx map模块

    L77 Syntax: map string $variable { ... } Default: — Context: http map 指令 curl -H 'aaaa:4444444' -H ' ...

  10. css溢出显示省略号

    单行溢出省略号 .show-detail li .info-name { width:278px; display:inline-block; /*下面是重点*/ overflow: hidden; ...