"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, he told them a story.

"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission."

"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)"

Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help!

DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate.

Input

The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T.

The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).

Output

A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.

Sample Input

2 2
1 2 5
2 1 4
1 2 2

Sample Output

14

题意:n个点,m条边的有向图,每个点可以多次抵达,给出s、t、k,求从s到t的第k短路
思路:求最短路最常用的就是堆优化的dijkstra,那么很容易想到的一种写法:用dijkstra,当t第k次出现,那就是第k短路;但是如果有些状态当前值很小,但是未来值很大,优先队列就会先去扩展这个状态,
这样的情况多了,就会导致搜索量增大。 优先队列是以当前所走过的路程最小的为优先的,它并不知道该状态后面的情况,所有排序并不是很完美,这时候我们就可以想到为其加入评估函数(估计该状态后面所需的路程),并且评估值<=实际值。
这样我们使用优先队列是,将(该状态花费+评估值,节点)送入队列,取出时是总体评估最小,也就是不仅考虑了已走路程,顺便考虑了其后续可能路程,取出之后,花费-该点评估值==实际花费,然后扩展该状态,
将(状态实际花费+下个点评估值+该路径长度)送入队列
这样当t出项k次时出现的就是第k短路
因为 评估值<=实际值,所以状态花费+评估值 <= 状态花费+实际值 == s(总花费),所以最优值肯定会在次优值之前出栈,(虽然之前的优先队列也这样)而且因为评估了后续所需,所以不会出现前小后大的
非最优花费大量在队列前扩展,尽量让其直接将最优解排在队列前扩展,少扩展其他分支。 那么这个题的评估函数怎么求呢,因为我们是求到t的k短路,那么我们就把所有点到t的对短路当成评估函数,也就是以t为原点,求一遍最短路,刚好这个值可以反应未来变化的趋势和相对大小关系

注:该题当s==t时,0并不是第一条路
 #include<iostream>
#include<cstdio>
#include<queue>
#include<string.h>
using namespace std; int n,m;
typedef pair<int,int>p;
struct E
{
int x,y,val;
int next;
E(int x=,int y=,int val=,int next=-):x(x),y(y),val(val),next(next){}
}edge[];
int head[];
int cnt;
E t_edge[];
int t_head[];
int t_cnt;
int f[];
int ans[];
void add(int x,int y,int val)
{
edge[++cnt] = E(x,y,val,head[x]);
head[x] = cnt;
t_edge[++t_cnt] = E(y,x,val,t_head[y]);
t_head[y] = t_cnt;
} void get_f(int t)
{
memset(f,0x3f,sizeof(f));
priority_queue<p,vector<p>,greater<p> >que;
while(!que.empty())que.pop();
que.push(p(,t));
while(!que.empty())
{
p tmp = que.top();
que.pop();
int now = tmp.second;
int cost = tmp.first;
if(f[now] != 0x3f3f3f3f)continue;
f[now] = cost;
for(int i=t_head[now];i!=-;i=t_edge[i].next)
{
if(f[now] + t_edge[i].val < f[t_edge[i].y])
{ que.push(p(f[now] + t_edge[i].val,t_edge[i].y));
}
}
}
} int cal(int s,int t,int k)
{
priority_queue<p,vector<p>,greater<p> >que;
while(!que.empty())que.pop();
que.push(p(f[s],s));
memset(ans,0x3f,sizeof(ans));
int cnt = ;
if(s == t)k++;
if(f[s] == 0x3f3f3f3f)return -;
while(!que.empty())
{
p tmp = que.top();
que.pop();
int now = tmp.second;
int cost = tmp.first - f[now];
if(now == t)
{
cnt++;
if(cnt == k)return cost;
}
for(int i=head[now];i!=-;i=edge[i].next)
{
que.push(p(cost+edge[i].val+f[edge[i].y],edge[i].y));
}
}
return -;
} int main()
{
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
memset(t_head,-,sizeof(t_head));
for(int i=;i<=m;i++)
{
int u,v,k;
scanf("%d%d%d",&u,&v,&k);
add(u,v,k);
}
int s,t,k;
scanf("%d%d%d",&s,&t,&k);
get_f(t);
printf("%d\n",cal(s,t,k));
}

Remmarguts' Date POJ - 2449 (A*搜索|k短路)的更多相关文章

  1. POJ 2449 Dijstra + A* K短路

    这题一开始的思路应该是直接从源点进行BFS搜索K短路. 但这样的复杂度在点数和K的值增大后将会变得很大. 而A*算法则构造一个h(x),在进行BFS时,每次都抛出最小的h(x)从而使汇点的出队速度加快 ...

  2. POJ 2449 求第K短路

    第一道第K短路的题目 QAQ 拿裸的DIJKSTRA + 不断扩展的A* 给2000MS过了 题意:大意是 有N个station 要求从s点到t点 的第k短路 (不过我看题意说的好像是从t到s 可能是 ...

  3. POJ:2449-Remmarguts' Date(单源第K短路)

    Remmarguts' Date Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 33081 Accepted: 8993 Des ...

  4. POJ——T 2449 Remmarguts' Date

    http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 30754   ...

  5. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  6. poj 2449 Remmarguts' Date (k短路模板)

    Remmarguts' Date http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  7. 【POJ】2449 Remmarguts' Date(k短路)

    http://poj.org/problem?id=2449 不会.. 百度学习.. 恩. k短路不难理解的. 结合了a_star的思想.每动一次进行一次估价,然后找最小的(此时的最短路)然后累计到k ...

  8. poj 2449 Remmarguts' Date K短路+A*

    题目链接:http://poj.org/problem?id=2449 "Good man never makes girls wait or breaks an appointment!& ...

  9. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

随机推荐

  1. python 面向对象编程(初级篇)

    飞机票 概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最 ...

  2. Failed to execute goal org.apache.tomcat.maven:tomcat7-maven-plugin:2.2:deploy (default-cli) on project Resource: Cannot invoke Tomcat manager: Connection refused: connect -> [Help 1]

    1.问题描述 在 DOS 下执行 tomcat7-maven-plugin 插件部署,启动 Apache Tomcat 服务报错如下: D:\2018\code\XXX>mvn tomcat7: ...

  3. extjs中store的reload事件异步问题解决

    转载自:http://blog.sina.com.cn/s/blog_8f8b7fc10100zd75.html store0.reload({params:{start:0, limit:10}}) ...

  4. LeetCode(82):删除排序链表中的重复元素 II

    Medium! 题目描述: 给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字. 示例 1: 输入: 1->2->3->3->4->4- ...

  5. Penetration testing _internal & wireless Penetration Testing

    第一部分 渗透测试步骤 ---参考资料  Ethical Hacking: The Value of Controlled Penetration Tests  下载地址  链接:https://pa ...

  6. 状态压缩dp小结

    最近一段时间算是学了一些状态压缩的题目,在这里做个小结吧 首先是炮兵布阵类题目,这类题目一开始给定一个矩形,要求在上面放置炮兵,如果在一格放了炮兵那么周围的某些格子就不能放炮兵,求最大能放置炮兵的数量 ...

  7. Nginx详解十七:Nginx深度学习篇之动静分离

    动静分离:通过中间件将动态请求和静态请求分离 作用:分离资源,减少不必要的请求消耗,减少请求延时 动静分离还有个好处就是,当动态请求的后端服务出问题了,只会影响动态的部分,静态资源不影响,照样加载 如 ...

  8. MAKEWORD 宏(macro)

    先看看Microsoft给出的关于MAKEWORD的参考: 从Microsoft给出的参考可以得知,宏MAKEWORD的作用是用于创建一个由bHigh和bLow组成的WORD类型的值. 其中bLow是 ...

  9. 论文阅读笔记七:Structure Inference Network:Object Detection Using Scene-Level Context and Instance-Level Relationships(CVPR2018)

    结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong ...

  10. CTPN项目部分代码学习

    上次拜读了CTPN论文,趁热打铁,今天就从网上找到CTPN 的tensorflow代码实现一下,这里放出大佬的github项目地址:https://github.com/eragonruan/text ...