【CF833D】Red-Black Cobweb(点分治)

题面

CF

有一棵树,每条边有一个颜色(黑白)和一个权值,定义一条路径是好的,当且仅当这条路径上所有边的黑白颜色个数a,b满足2min(a,b)>=max(a,b),一条路径的权值为路径上所有边的权值的乘积,求所有好的路径的权值乘积.

\(n<=10^5\)

题解

首先看到求所有路径相关的内容,不难想到点分治。

两个限制可以转化为需要同时满足:\(2a\ge b,2b\ge a\)。

对于两条路径\(a1,b1/a2,b2\)考虑如何合并。

需要满足的两个条件就变成了\(2(a1+a2)\ge b1+b2\)以及\(2(b1+b2)\ge a1+a2\)

再稍微拆开看看就变成了\(2a1-b1\ge b2-2a2\),另一个类似。

这里怎么计算总的方案数,那么就用总数减去不合法的,如果不合法显然只会有一个不等式不合法(因为另外一个不等式是由最大值的两倍大于较小值得到的,它无论如何都会是对的),那么只需要统计有一个不合法的所有链就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
struct Line{int v,next,w,c;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w,int c){e[cnt]=(Line){v,h[u],w,c};h[u]=cnt++;}
int Size,mx,rt,size[MAX];bool vis[MAX];
int n,N,ans,ans1=1,ans2=1;
int lb(int x){return x&(-x);}
struct BIT
{
int c1[MAX<<3],c2[MAX<<3];
void pre(){for(int i=1;i<=N;++i)c1[i]=1,c2[i]=0;}
void Modify(int x,int w){while(x<=N)c1[x]=1ll*c1[x]*w%MOD,c2[x]+=1,x+=lb(x);}
void Clear(int x){while(x<=N)c1[x]=1,c2[x]=0,x+=lb(x);}
int Querys(int x){int s=1;while(x)s=1ll*s*c1[x]%MOD,x-=lb(x);return s;}
int Queryt(int x){int s=0;while(x)s+=c2[x],x-=lb(x);return s;}
int Querys(int l,int r){return 1ll*Querys(r)*fpow(Querys(l-1),MOD-2)%MOD;}
int Queryt(int l,int r){return Queryt(r)-Queryt(l-1);}
}c1,c2;
void Getroot(int u,int ff)
{
int ret=0;size[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff||vis[v])continue;
Getroot(v,u);size[u]+=size[v];ret=max(ret,size[v]);
}
ret=max(ret,Size-size[u]);
if(ret<mx)mx=ret,rt=u;
}
struct Pair{int a,b,w;}S[MAX],T[MAX];
int top,sum,W,SW,py;
void dfs(int u,int ff,int a,int b,int w)
{
T[++top]=(Pair){a,b,w};W=1ll*w*W%MOD;
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff&&!vis[e[i].v])
dfs(e[i].v,u,a+(e[i].c^1),b+e[i].c,1ll*w*e[i].w%MOD);
}
void Divide(int u)
{
vis[u]=true;sum=0;SW=1;S[++sum]=(Pair){0,0,1};
c1.Modify(py,1);c2.Modify(py,1);
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(vis[v])continue;
top=0;W=1;dfs(e[i].v,u,e[i].c^1,e[i].c,e[i].w);
ans1=1ll*ans1*fpow(W,sum)%MOD*fpow(SW,top)%MOD;
SW=1ll*SW*W%MOD;
for(int j=1;j<=top;++j)
{
int A=T[j].b-2*T[j].a-1+py,B=T[j].a-2*T[j].b-1+py;
ans2=1ll*ans2*c1.Querys(2,A)%MOD*fpow(T[j].w,c1.Queryt(2,A))%MOD;
ans2=1ll*ans2*c2.Querys(2,B)%MOD*fpow(T[j].w,c2.Queryt(2,B))%MOD;
}
for(int j=1;j<=top;++j)
{
int A=2*T[j].a-T[j].b+py;c1.Modify(A,T[j].w);
int B=2*T[j].b-T[j].a+py;c2.Modify(B,T[j].w);
S[++sum]=T[j];
}
}
for(int j=1;j<=sum;++j)
{
int A=2*S[j].a-S[j].b+py;c1.Clear(A);
int B=2*S[j].b-S[j].a+py;c2.Clear(B);
}
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(vis[v])continue;
Size=mx=size[v];Getroot(v,u);
Divide(rt);
}
}
int main()
{
n=read();py=n+n+2;N=5*n;c1.pre();c2.pre();
for(int i=1,u,v,w,c;i<n;++i)
u=read(),v=read(),w=read(),c=read(),Add(u,v,w,c),Add(v,u,w,c);
Size=mx=n;Getroot(1,0);Divide(rt);
ans=1ll*ans1*fpow(ans2,MOD-2)%MOD;
printf("%d\n",ans);
return 0;
}

【CF833D】Red-Black Cobweb(点分治)的更多相关文章

  1. 【CF833D】Red-Black Cobweb

    [CF833D]Red-Black Cobweb 题面 洛谷 题解 看到这种统计路径的题目当然是淀粉质啦. 考虑转化一下信息设一条路径上有红点\(a\)个,黑点\(b\)个 则\(2min(a,b)\ ...

  2. CF833D Red-Black Cobweb 点分治、树状数组

    传送门 统计所有路径的边权乘积的乘积,不难想到点分治求解. 边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和 ...

  3. Codeforces 833D Red-Black Cobweb [点分治]

    洛谷 Codeforces 思路 看到树上路径的统计,容易想到点分治. 虽然只有一个限制,但这个限制比较麻烦,我们把它拆成两个. 设黑边有\(a\)条,白边有\(b\)条,那么有 \[ 2a\geq ...

  4. Codeforces 833D Red-black Cobweb【树分治】

    D. Red-black Cobweb time limit per test:6 seconds memory limit per test:256 megabytes input:standard ...

  5. CF833D Red-Black Cobweb

    题面 题解 点分治大火题... 设白边数量为$a$,黑边为$b$,则$2min(a,b)\geq max(a,b)$ 即$2a\geq b\;\&\&2b\geq a$ 考虑点分治时如 ...

  6. 题解 CF833D Red-Black Cobweb

    题目传送门 题目大意 给出一个 \(n\) 个点的树,每条边有边权和颜色 \(0,1\) ,定义一条链合法当且仅当 \(0,1\) 颜色的边数之比小于等于 \(2\) ,求所有合法的链的边权之积的积. ...

  7. 【CDQ分治】[HNOI2010]城市建设

    题目链接 线段树分治+LCT只有80 然后就有了CDQ分治的做法 把不可能在生成树里的扔到后面 把一定在生成树里的扔到并查集里存起来 分治到l=r,修改边权,跑个kruskal就行了 由于要支持撤销, ...

  8. URAL 1181 Cutting a Painted Polygon【递归+分治】

    题目: http://acm.timus.ru/problem.aspx?space=1&num=1181 http://acm.hust.edu.cn/vjudge/contest/view ...

  9. POJ 2114 点分治

    思路: 点分治 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> u ...

随机推荐

  1. hibernate 关于hbm.xml编写的总结

    在Hibernate中,各表的映射文件….hbm.xml可以通过工具生成,例如在使用MyEclipse开发时,它提供了自动生成映射文件的工具.本节简单的讲述一下这些配置文件的配置. 配置文件的基本结构 ...

  2. HDU 3947 Assign the task

    http://acm.hdu.edu.cn/showproblem.php?pid=3974 Problem Description There is a company that has N emp ...

  3. nodejs 中的一些方法

    fs.unlink(path, [callback(err)]) //删除文件操作. //path 文件路径 //callback 回调,传递一个异常参数err. ndoe中解决跨域问题 expres ...

  4. 简要了解 MySql 5.5/5.6/5.7/8 出现的新特性

    MySQL的开发周期 在比较之前,首先提一下MySQL的开发周期. MySQL一个大版本的开发,大致经历如下几个阶段: Feature Development Feature Testing Perf ...

  5. redux模块化demo

    store.js 在redux中 store 是唯一的. import {createStore} from 'redux'; import reducer from './reducer' // 引 ...

  6. 【学亮IT手记】PL/SQL游标编程

    游标提供了一种从表中检索数据并进行操作的灵活手段,主要用在服务器上,处理由客户端发送给服务器端的sql语句,或者是批处理.存储过程.触发器中的数据处理请求. 显式游标 是由用户声明和操作的一种游标,通 ...

  7. Day 5-3 多态与多态性

    多态与多态性 鸭子类型 多态与多态性 多态:一类事物有多种形态.比如,动物有多种形态,人,狗,猪,豹子.水也有多种形态,冰,雪,水蒸气. #多态:同一类事物的多种形态 import abc class ...

  8. RabbitMQ基本操作

    更加详细的 链接https://www.cnblogs.com/dwlsxj/p/RabbitMQ.html RabbitMQ基础知识 一.背景 RabbitMQ是一个由erlang开发的AMQP(A ...

  9. spring-01

    Spring概述 概述 Spring是一个开源框架 为企业级开发而生 是一个IOC[DI]和AOP容器框架 有许多优良特性 非侵入式:基于Spring开发的应用中的对象可以不依赖Spring的API. ...

  10. Entity Framework 6 自定义连接字符串ConnectionString连接MySQL

    在开始介绍之前,首先来看看官方对Entity Framework的解释:Entity Framework (EF) is an object-relational mapper that enable ...