BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)
题意
Sol
把式子拆开,就是求这个东西
\]
那么设\(f(x) = \sum_{i = 1}^n i^k\),这是个经典的\(k + 1\)多项式,直接差值
式子就可以化成
\]
设\(g(x) = \sum_{i = 1}^n f(x)\)
对\(g\)差分之后实际上也就得到了\(f(x)\),根据多项式的定义,\(g(x)\)是个\(k+2\)次多项式。
同理我们要求的就是个\(k+3\)次多项式
直接暴力插值就行了
时间复杂度:\(O(Tk^3)\)
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod = 1234567891, MAXN = 127;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, K, a, N, d, f[MAXN], g[MAXN], x[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int add2(int &x, int y) {
if(x + y < 0) x = (x + y + mod);
else x = (x + y >= mod ? x + y - mod : x + y);
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int Large(int *a, int k, int N) {
for(int i = 0; i <= k; i++) x[i] = i;
int ans = 0;
for(int i = 0; i <= k; i++) {
int up = a[i], down = 1;
for(int j = 0; j <= k; j++) {
if(i == j) continue;
up = mul(up, add(N, -x[j]));
down = mul(down, add(x[i], -x[j]));
}
add2(ans, mul(up, fp(down, mod - 2)));
}
return ans;
}
signed main() {
#ifndef ONLINE_JUDGE
//freopen("a.in", "r", stdin);freopen("a.out", "w", stdout);
#endif
T = read();
while(T--) {
K = read(), a = read(), N = read(), d = read();
memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g));
/*
for(int i = 1; i <= K + 4; i++) f[i] = add(f[i - 1], fp(i, K));
for(int i = 1; i <= K + 4; i++) g[i] = add(g[i - 1], Large(f, K + 4, a + i * d));//ֱ直接这样写是错的
for(int i = 1; i <= K + 4; i++) f[i] = add(f[i - 1], Large(g, K + 4, i));
printf("%d\n", Large(g, K + 4, N));
*/
for(int i = 1; i <= K + 4; i++) f[i] = add(f[i - 1], fp(i, K));
for(int i = 1; i <= K + 4; i++) f[i] = add(f[i], f[i - 1]);
for(int i = 0; i <= K + 4; i++) g[i] = add(i > 0 ? g[i - 1] : 0, Large(f, K + 4, add(a, mul(i, d))));
printf("%lld\n", Large(g, K + 4, N));
}
return 0;
}
/*
5
123 123456789 456879 132
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
*/
BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)的更多相关文章
- BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)
BZOJ 题意即求\[\sum_{i=0}^n\sum_{j=1}^{a+id}\sum_{x=1}^jx^k\] 我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^ ...
- 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)
[题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...
- bzoj3453: tyvj 1858 XLkxc(拉格朗日插值)
传送门 \(f(n)=\sum_{i=1}^ni^k\),这是自然数幂次和,是一个以\(n\)为自变量的\(k+1\)次多项式 \(g(n)=\sum_{i=1}^nf(i)\),因为这东西差分之后是 ...
- [BZOJ3453]tyvj 1858 XLkxc:拉格朗日插值
分析 之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法. 由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的 ...
- BZOJ 3453 - tyvj 1858 XLkxc(插值+推式子)
题面传送门 首先根据我们刚学插值时学的理论知识,\(f(i)\) 是关于 \(i\) 的 \(k+1\) 次多项式.而 \(g(x)\) 是 \(f(x)\) 的前缀和,根据有限微积分那一套理论,\( ...
- 拉格朗日插值&&快速插值
拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k ...
- Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值
The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...
- 常系数齐次线性递推 & 拉格朗日插值
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...
- 快速排序 and 拉格朗日插值查找
private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...
随机推荐
- nginx配置tp5的pathinfo模式并隐藏后台入口文件
server { listen 2223; server_name manage; access_log /data/wwwlogs/access_manage.log combined; root ...
- java中根据key获取resource下properties资源文件中对应的参数
properties资源文件是放在resource目录下的: 新建工具类: package com.demo.utils; import java.io.InputStream; import jav ...
- django在关闭debug后,admin界面 及静态文件无法加载的解决办法
当debug为true的时候,ALLOWED_HOSTS是跳过不管用的.所以这里需要将debug关掉,令debug=false,ALLOWED_HOSTS=[ '*' ]表示所有的主机都可以访问 开启 ...
- java~springboot~h2数据库在单元测试中的使用
单元测试有几点要说的 事实上springboot框架是一个tdd框架,你在进行建立项目时它会同时建立一个单元测试项目,而我们的代码用例可以在这个项目里完成,对于单元测试大叔有以下几点需要说明一下: 单 ...
- less用法小结
1,采用koala进行编译,可以实时地在vscode这样的工具中看到less到css的转换: 2,均支持/**/以及//两种形式的注释,由于后期维护是维护less,因此推荐使用后者,因为后者不会被编译 ...
- 函数式编程之-Partial application
上一篇关于Currying的介绍,我们提到F#是如何做Currying变换的: let addWithThreeParameters x y z = x + y + z let intermediat ...
- DataCleaner(4.5)第二章
Chapter 2. Getting started with DataCleaner desktop Table of Contents |--Installing the desktop appl ...
- mysql中主键和唯一键的区别
区别项 primary key(主键) unique(唯一键约束) 唯一性 可以 可以 是否可以为空 不可以 可以 允许个数 只能有1个 允许多个 是否允许多列组合 允许 允许
- 03_SQL server数据类型
SQL server数据类型 String类型: 数据类型: 描述 存储 char(n) 固定长度的字符串.最多 8,000 个字符.定义类型为char(5),那么就表示该类型可以存储5个字符,即使存 ...
- CC2530微处理器接口开发技术——信号灯的设计与实现
本问主要介绍了CC2530处理器的通用输入/输出接口(GPIO),以及GPIO的位操作,理解GPIO的基本原理和功能,最后使用C语言驱动CC2530的GPIO实现对信号灯的控制. CC2530的GPI ...