传送门:CF原网 洛谷

题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$。

$1\le n\le 10^9,1\le k\le 5000$。


很水的一道题。

根据第二类斯特林数的性质:

$$n^k=\sum^k_{i=1}\begin{Bmatrix}k\\i\end{Bmatrix}i!\dbinom{n}{i}$$

那么直接套进去:

$$\sum\limits^n_{i=1}\dbinom{n}{i}\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{i}{j}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits^n_{i=j}\dbinom{n}{i}\dbinom{i}{j}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits^n_{i=j}\dfrac{n!}{i!(n-i)!}\dfrac{i!}{j!(i-j)!}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits^n_{i=j}\dfrac{n!}{(n-i)!}\dfrac{1}{j!(i-j)!}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits^n_{i=j}\dfrac{n!}{j!(n-j)!}\dfrac{(n-j)!}{(n-i)!(i-j)!}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\sum\limits^n_{i=j}\dbinom{n}{j}\dbinom{n-j}{i-j}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{n}{j}\sum\limits^n_{i=j}\dbinom{n-j}{i-j}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{n}{j}\sum\limits^{n-j}_{i=0}\dbinom{n-j}{i}$$

$$\sum^k_{j=1}\begin{Bmatrix}k\\j\end{Bmatrix}j!\dbinom{n}{j}2^{n-j}$$

如果我们知道了所有的 $\begin{Bmatrix}k\\j\end{Bmatrix}$ 那么这个式子可以做到 $O(k\log n)$。

而预处理这些斯特林数可以用 $k^2$ 递推,当然也可以用卷积做到 $k\log k$。

由于本题 $k^2$ 已经足够,而且模数不友好,直接递推就好了。

时间复杂度 $O(k^2+k\log n)$。

#include<bits/stdc++.h>
using namespace std;
const int mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,k,S[][];
inline int qpow(int a,int b){
int ans=;
for(;b;b>>=,a=1ll*a*a%mod) if(b&) ans=1ll*ans*a%mod;
return ans;
}
int main(){
n=read();k=read();
S[][]=;
FOR(i,,k) FOR(j,,i) S[i][j]=(S[i-][j-]+1ll*S[i-][j]*j)%mod;
int c=,f=,ans=;
FOR(i,,min(n,k)){
c=1ll*c*(n-i+)%mod*qpow(i,mod-)%mod;
f=1ll*f*i%mod;
ans=(ans+1ll*c*S[k][i]%mod*f%mod*qpow(,n-i))%mod;
}
printf("%d\n",ans);
}

CF932E Team Work(第二类斯特林数)的更多相关文章

  1. CF932E Team Work(第二类斯特林数)

    题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...

  2. CF932E Team Work——第二类斯特林数

    题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...

  3. Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )

    题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...

  4. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  5. 【cf932E】E. Team Work(第二类斯特林数)

    传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...

  6. Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数

    题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...

  7. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  8. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  9. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

随机推荐

  1. 文件传输协议FTP、SFTP和SCP

    网络通信协议分层 应用层: HTTP(Hypertext Transfer Protocol 超文本传输协议,显示网页) DNS(Domain Name System) FTP(File Transf ...

  2. 【Python3练习题 015】 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。求它在第10次落地时,共经过多少米?第10次反弹多高?

    a = [100]  #每个‘反弹落地’过程经过的路程,第1次只有落地(100米) h = 100  #每个‘反弹落地’过程,反弹的高度,第1次为100米 print('第1次从%s米高落地,走过%s ...

  3. js数据放入缓存,需要再调用

    再贴代码之前先描述下,这个技术应用的场景:一个页面的http请求次数能少点就少,这样大大提高用户体验.所以再一个页面发起一个请求,把所有数据都拿到后储存在缓存里面,你想用的时候再调用出来,这个是非常好 ...

  4. React Native之通知栏消息提示(android)

    React Native之通知栏消息提示(android) 一,需求分析与概述 1.1,推送作为手机应用的基本功能,是手机应用的重要部分,如果自己实现一套推送系统费时费力,所以大部分的应用都会选择使用 ...

  5. HTTL之初印象

    概述 HTTL (Hyper-Text Template Language) 是一个高性能的开源JAVA模板引擎, 适用于动态HTML页面输出, 可替代JSP页面, 指令和Velocity相似. 简洁 ...

  6. [2018.05].NET Core 3 and Support for Windows Desktop Applications

    .NET Core 3 and Support for Windows Desktop Applications Richard 微软官网的内容...net 3.0 升级任务 任重道远 https:/ ...

  7. tensorflow实现基于LSTM的文本分类方法

    tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...

  8. xadmin快速搭建后台管理系统

    一.xadmin的特点: 1.基于Bootstrap3:Xadmin使用Bootstrap3.0框架精心打造.基于Bootstrap3,Xadmin天生就支持在多种屏幕上无缝浏览,并完全支持Boots ...

  9. Python turtle绘制阴阳太极图代码解析

    本文详细分析如何使用Python turtle绘制阴阳太极图,先来分解这个图形,图片中有四种颜色,每条曲线上的箭头表示乌龟移动的方向,首先从中心画一个半圆(红线),以红线所示圆的直径作半径画一个校园, ...

  10. 安装mysql zip5.7版--安裝

    一直以来都习惯了使用MySQL安装文件(.exe),今天下载了一个.zip版本的MySQL,安装过程中遇到了一些问题,如下: 1.在MySQL官网上(http://dev.mysql.com/down ...