考虑 T3+1  {1,2,3,4}

T3是3个元素的划分,如果在里面加入子集{4},   4被标成特殊元素,  就形成了T4一类的划分(里面的子集的并集是{1,2,3,4})

T2是2个元素的划分,如果在里面加入子集{4,x1} -- x是从{1,2,3}里面任意取一个, {4,x}加到T2的划分中形成了T4的一类划分。 就是带特殊元素4,子集是2个元素的{4,x}形式的一类划分。

T1是1个元素的划分,如果在里面加入子集{4,x1,x2}--x1,x2是从{1,2,3}里任意取二个,{4,x1,x2}加到T1的划分中形成了T4的一类划分。就是带特殊元素4,子集是2个元素的{4,x1,x2}形式的一类划分。

T0是0个元素的划分,如果在里面加入子集{4,x1,x2,x3}--x1,x2,x3是从{1,2,3}里任意取3个。 {4,x1,x2,x3}加入到T0中形成T4的一类划分。 这个也就对应2.8题公式前面的数字1

现在讨论这个划分的合理性:

带特殊元素的子集在 n+1的情况下有 :

设第n+1个元素是sEle

1个元素(长度){sEle}  共 C(n,0)=1种。{sEle}加入到Tn的划分中就形成了Tn+1的一类划分。

2个元素  (长度)  {sEle,1} {sEle,2} {sEle,3}.....{sEle,n} 共  C(n,1)种 。{sEle,x}加入到Tn-1 中就形成了Tn+1的一类划分。

3个元素(长度){sEle,1,2}   {sEle,1,3} .....{sEle,1,n}..... 共C(n,2)种。

....................

n+1个元素(长度) {sEle,1,2,3....n} 共C(n,n)=1 种 。 {sEle,1,2,3...n}加入到Tn-n(即T0参考上图,就是空集) 中形成Tn+1的一类划分。

首先上面的划分,特殊元素组成的长度1个元素的子集与长度n+1的子集都涉及了,另外长度一样比方长度2但另外一个元素可以是1、2、3.、、、、n的情况也考虑了。

所以上面的划分考虑特殊元素的所有组合是完备的。 另外T0 到 Tn的每个划分是唯一的 ,比方T6的任意一个划分中的子集的并集都是[1,2,3,4,5,6}即6个元素,加入唯一的{sEle,x1,x2....}后

形成的Tn+1一个划分也是唯一的----意思是跟T7,Tx等不会出现重复的意思。

https://blog.csdn.net/MIKASA3/article/details/51283929

https://blog.csdn.net/wust_cyl/article/details/79323038

关于Bell数的一道题目的更多相关文章

  1. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. L1-3 宇宙无敌加法器 - 令人激动的一道题目

    L1-3 宇宙无敌加法器 - 令人激动的一道题目 感觉好久没有这么认真的做一道题了,今天看到一句话, 说是编程是一个工程型的工作,想要学好,"无他,唯手熟尔" 之前觉得自己笨,怀疑 ...

  3. codeforces 569D D. Symmetric and Transitive(bell数+dp)

    题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...

  4. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  5. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  6. 恶补---bell数

    定义 bell数即一个集合划分的数目 示例 前几项的bell数列为 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ,... 求值方法 1.bell ...

  7. Bell数入门

    贝尔数 贝尔数是以埃里克·坦普尔·贝尔命名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): $$B_0 = 1, B_1 = 1, B_2 = 2, B_3 = 5, B_4 = ...

  8. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  9. 对CRC32的小结加上bugku一道题目:好多压缩包

    CRC32就是校验值,一般来说不同的文件校验值不一样,所以我们可以挨个爆破,当然这是在文件比较小的时候.下面是几种情形. 1. 我新建了一个flag.txt文档,里面是我的生日20180818 然后我 ...

随机推荐

  1. Visual Studio 2017 密匙

    趁着这两天微软发布了Visual Studio 2017,安装体验了这个史上最强IDE最新版,分享一下自己的安装过程: VS2017下载地址,该版本堪称史上最大IDE,随便勾了几个选项,就要占用几十个 ...

  2. linux 之网络命令

    write 给用户发消息,用户必须在线,以ctrl+d保存结束 语法: write 用户 wall发广播信息(write all)  语法:wall 信息 mail 查看发送电子邮件 发送语法 : m ...

  3. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  4. eclipse打包java项目

    参考链接:https://blog.csdn.net/heshushun/article/details/78039801

  5. Git安装配置,和使用的简介

    方案1:安装Git和TortoiseGit,使用TortoiseGit的图形化界面管理项目代码 材料准备: Git安装包 TortoiseGit安装包 注:包资源,可疑百度搜索,在Git官网下载 安装 ...

  6. javaMail实现收发邮件(四)

    JavaMail API中也提供了一些专门的类来对邮件的接收进行相关的操作,在介绍这些类之前,我们先来了解下邮件接收API的体系结构,JavaMai API中定义了一个java.mail.Store类 ...

  7. supervisorctl安装使用文档

    1.apt-get install supervisor下载或者pip install supervisor(因为supervisor是python写的)supervisor和python项目没有关系 ...

  8. python--第十九天总结(Django)

    1.静态资源导入 {#在顶部load 一个staticfiles#} {% load staticfiles %} {#在底部使用#} <script src='{% static " ...

  9. [LINQ] group by 与连接查询

    //副表 树种-品名-折材率 汇总 var listNeed = (from t in dtNeed.AsEnumerable() group t by new { t1 = t.Field<s ...

  10. 100-days: twenty

    Title: Apple's 'show time(好戏开幕)' event(发布会) puts the spotlight on subscription services Apple's 'sho ...