https://www.lydsy.com/JudgeOnline/problem.php?id=1106

一个叫做立方体大作战的游戏风靡整个Byteotia。这个游戏的规则是相当复杂的,所以我们只介绍他的简单规
则:给定玩家一个有2n个元素的栈,元素一个叠一个地放置。这些元素拥有n个不同的编号,每个编号正好有两个
元素。玩家每次可以交换两个相邻的元素。如果在交换之后,两个相邻的元素编号相同,则将他们都从栈中移除,
所有在他们上面的元素都会掉落下来并且可以导致连锁反应。玩家的目标是用最少的步数将方块全部消除。

题意

贪心的想到每一对当前匹配的费用是他们之间未匹配的数字的个数。

第一个想法是每次取出费用最小的对进行匹配,每次产生r - l - 1的费用,直到全部匹配,但是这样怎么看都觉得会T,事实上每次并不需要总是取出最小的来匹配。

也就是说当状态时1234512345 678876的时候,左边和右边的操作事实上是相互独立的,先后顺序并不干扰,所以我们只要从前向后遍历,第一个和前面有匹配的数字就是当前状态的最优对数,我们直接将他消去,更新他们之间数字的费用即可。

操作用BIT维护一下就好了

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = 5e4 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K;
int tree[maxn * ];
void add(int x,int t){
for(;x <= N * ;x += x & -x) tree[x] += t;
}
int getsum(int x){
int s = ;
for(;x > ;x -= x & -x) s += tree[x];
return s;
}
int vis[maxn];
int main()
{
Sca(N);
int cnt = ;
int ans = ;
For(i,,N * ){
int x; Sca(x);
if(!vis[x]){
cnt++;
vis[x] = i;
add(i,);
}else{
ans += cnt - getsum(vis[x]);
cnt--;
add(vis[x],-);
}
}
Pri(ans);
#ifdef VSCode
system("pause");
#endif
return ;
}

bzoj1106 树状数组的更多相关文章

  1. BZOJ1106[POI2007]立方体大作战tet - 树状数组

    描述 一个叫做立方体大作战的游戏风靡整个Byteotia.这个游戏的规则是相当复杂的,所以我们只介绍他的简单规则:给定玩家一个有2n个元素的栈,元素一个叠一个地放置.这些元素拥有n个不同的编号,每个编 ...

  2. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  3. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

  4. codeforces 597C C. Subsequences(dp+树状数组)

    题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...

  5. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  6. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  7. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

  8. 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组

    E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  9. 【BZOJ-3881】Divljak AC自动机fail树 + 树链剖分+ 树状数组 + DFS序

    3881: [Coci2015]Divljak Time Limit: 20 Sec  Memory Limit: 768 MBSubmit: 508  Solved: 158[Submit][Sta ...

随机推荐

  1. QXcbConnection: Could not connect to display

    import matplotlib; matplotlib.use('agg') 注意:要添加到所有matplotlib前面,否则不起作用

  2. Linux命令归纳

    Linux基本命令 Linux Xshell远程连接 ssh 用户名@id地址 例如: ssh root@192.168.11.53 增加类指令 创建文件夹 mkdir 文件名 mkdir -p 路径 ...

  3. PHP——生成唯一序列号UUID

    <?php function uuid($uid = '') { $chars = md5(uniqid(mt_rand(), true)); $uuid = substr($chars, 0, ...

  4. npm、webpack、vue-cli

    Node.js   npm 什么是Node.js  以及npm 简单的来说 Node.js 就是运行在服务端的JavaScript,基于Chrome V8 引擎的. npm 是Node.js 的包管理 ...

  5. Educational Codeforces Round 61 (Rated for Div. 2)

    A. Regular Bracket Sequence 题意:给出四种括号的数量 ((  )) ()  )( 问是否可以组成合法的序列(只能排序不能插在另外一个的中间) 思路: 条件一:一个或 n个) ...

  6. 【BZOJ2431】【HAOI2009】逆序对数列 DP

    题目大意 问你有多少个由\(n\)个数组成的,逆序对个数为\(k\)的排列. \(n,k\leq 1000\) 题解 我们考虑从小到大插入这\(n\)个数. 设当前插入了\(i\)个数,插入下一个数可 ...

  7. prufer序列

    介绍 其实是\(pr\ddot{u}fer\)序列 什么是prufer序列? 我们认为度数为\(1\)的点是叶子节点 有一颗无根树,每次选出编号最小的叶子节点,加到当前prufer序列的后面,然后删掉 ...

  8. 如何使用JPQL写纯SQL语句

    使用JPQL,需要把SQL语句修改成类似HQL 语句.SQL 查询的是数据库,而JPQL 查询的是对象和属性,在语法上是有些不同的.对于有些用JPQL 无法写出来的查询,还是使用原生SQL写出来方便 ...

  9. MT【296】必要性探路

    已知$a,b\in R.f(x)=e^x-ax+b$,若$f(x)\ge1$恒成立,则$\dfrac{b-a}{a}$的取值范围_____ 提示:答案:$[-1,\infty)$取$x=0,b\ge0 ...

  10. pycharm 2016.1.4 软件注册码生成

    昨天电脑忽然坏了,没办法只能电脑重做系统,最让我头疼的是面对新电脑的软件安装和配置..... 由于之前电脑很久没有升级过ide,所以pycharm一直停留在2016.1.4的版本,当我打开pychar ...