马尔可夫毯(Markov Blanket)

最近接触到马尔可夫毯(MarkovBlanket)这个概念,发现网上资料不多,通俗易懂的解释甚少,查了一些资料后,决定写一个总结。

提到马尔可夫毯,就会有一堆从名字上看很相近的概念,比如马尔可夫链(Markov Chain, MC)、隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(MarkovRandom Field, MRF)等等。其实,马尔可夫毯与这些概念不同,它是一个局部的概念,而不是一个整体模型级别的概念。以下内容主要参考【何宪. 基于贝叶斯网络的马尔可夫毯发现算法研究[D]. 电子科技大学, 2012.】,更多内容请参阅原文献。

首先看马尔可夫毯的定义

这种纯符号的定义看起来有些抽象,形象一点说,把一个随机变量全集U分成互斥的三部分,变量X以及集合A和B,三个子集没有交集,并集即为全集U;如果说给定集合A时,变量X与集合B没有任何关系,则称集合A为变量X的马尔可夫毯。在式(2-16)中,集合MB即为我说的集合A,{U-MB-{X}}即为我说的集合B,符号“⊥”表示“独立”,符号“|”表示在给定xx条件下,因此式(2-16)可读为“在给定集合MB时,变量X与{U-MB-{X}}独立”。

打个比方说,全集U是整个社会,X是你个人,MB就是你生活圈子里的人。按照哲学的说法,万事万物都是有联系的;但是,你并不会与社会里的所有人有什么关系,而是通过你的生活圈子和他们有间接的关系,即当给定你的生活圈子以后,你和社会其余的人是没啥关系的(独立的)。

特殊一点,当以上提到的全集是可信的贝叶斯网络(Bayesian Network, BN)的各个结点的时候:

这段话说的比较严谨,通俗点儿说就是在可信的贝叶斯网络中,一个节点的马尔可夫毯包括它的爸妈、它的所有孩子、还有它的配偶,即生它的人和它参与生出来的人及它的现任妻子(因为你会发现孩子并非都是T和配偶共有的^_^)。再通俗点儿说,其实用我国传统的家庭组成来解释最为形象,以家里的男主人为核心(即图中的T),一家人包括爷爷奶奶(X1、X2,即T的爸妈)、小俩口(T他自己、X8)、孩子(X6、X7,其中X7是小俩口一起生的,X6是T和前妻生的,但现归T抚养,已经没前妻啥事儿了^_^)。值得注意的是,每个节点的配偶可以不止一个(即允许一夫多妻制,假如添加一条从X4到X6的箭头,则X4也是T的配偶),也可以没有配偶(即单身,比如图中的X4,虽然有两个孩子,但目前单身),当然我在这里假设的性别也是随时在变的,找谁的马尔可夫毯,谁就是男性^_^

那么马尔可夫毯有什么用处呢?文中提到了特征选择(当然这只是用处之一):

换句话说,一个人的马尔可夫毯就是和你有关系的所有人(按式2-16定义)。如果想要调查这个人,总不能把全社会的所有人都调查一下吧(大量的特征冗余),其实只要找出这个人的马尔可夫毯人群调查一下就好了(特征选择)。特别地,如果这个社会是贝叶斯网络,马尔可夫毯人群只包括自己的家人,相当于人只与自己的家人有关系,和其他人没关系,是一种简化的模型,具体可以查一查贝叶斯网络的概念。

那么怎么找出这个人的马尔可夫毯人群呢?那就去看看原文献吧……

最后简单谈一点贝叶斯网络,它是一个有向无环图(Directed Acyclic Graph, DAG),如图2-2所示,结点之间的连结都是有向箭头,且不能沿着箭头走一圈。贝叶斯网络是马尔可夫链的推广,马尔可夫链限定了结构只能是一条链,而贝叶斯网络则不再限定结构是一个链,但二者都遵守马尔可夫假设,即一个结点只依赖于它的上一个节点(一阶马尔可夫假设)。有关马尔可夫链、隐马尔可夫模型、贝叶斯网络可以看一看《数学之美》,“统计语言模型”一章会涉及到马尔可夫链,专门有一章叫“隐含马尔可夫模型”,还有一章叫“马尔可夫链的扩展——贝叶斯网络”,讲的比较通俗易懂,此处不再赘述。

文中几次提到了可信的贝叶斯网络,在文献第3章给了可信性的定义:

也不知道上面的定义是不是指的“可信的贝叶斯网络”中的“可信”,个人理解“可信的”意思可能是指这个贝叶斯网络是个真正的贝叶斯网络,即满足马尔可夫假设。

来源:CSDN
原文:https://blog.csdn.net/jbb0523/article/details/78424522

马尔可夫毯(Markov Blanket)的更多相关文章

  1. 马尔可夫毯(Markov blanket)

    马尔可夫毯(Markov blanket) 马尔科夫毯,是满足如下特性的一个最小特征子集:一个特征在其马尔科夫毯条件下,与特征域中所有其他特征条件独立.设特征T的马尔科夫毯为MB(T),则上述可表示为 ...

  2. 马尔科夫毯(Markov Blanket)

    最优特征子集:选出特征的子集,能够比较准确的代表原来的特征.马尔科夫毯(MB)是贝叶斯网络(BN)的最有特征子集. 推测贝叶斯网络的网络结构是NP问题.贝叶斯网络中一个节点T的马尔科夫毯是其父节点,子 ...

  3. 从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)

    1.参考资料: 博客园 - 刘建平随笔:https://www.cnblogs.com/pinard/p/6945257.html 哔站up主 - 白手起家的百万富翁:https://www.bili ...

  4. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  5. PGM:无向图模型:马尔可夫网

    http://blog.csdn.net/pipisorry/article/details/52489321 马尔可夫网 马尔可夫网在计算机视觉领域通常称为马尔可夫随机场(Markov random ...

  6. 强化学习(二)马尔科夫决策过程(MDP)

    在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策 ...

  7. 【转载】 强化学习(二)马尔科夫决策过程(MDP)

    原文地址: https://www.cnblogs.com/pinard/p/9426283.html ------------------------------------------------ ...

  8. 【强化学习】MOVE37-Introduction(导论)/马尔科夫链/马尔科夫决策过程

    写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位 ...

  9. 白话马尔科夫链蒙特卡罗方法(MCMC)

    前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起 ...

随机推荐

  1. Jquery中.attr与.prop的区别

    ☆ http://www.jb51.net/article/114876.htm http://www.365mini.com/page/jquery-attr-vs-prop.htm https:/ ...

  2. Android USB gadget框架学习笔记

    一 Gadget框架结构 kernel/drivers/usb/gadget,这个目录是android下usbgadget的主要目录. Gadget功能组织单元:主要文件android.c,usb g ...

  3. 廖雪峰 ---- Python教程

    这是小白的Python新手教程,具有如下特点: 中文,免费,零起点,完整示例,基于最新的Python 3版本. Python是一种计算机程序设计语言.你可能已经听说过很多种流行的编程语言,比如非常难学 ...

  4. kettle的资源库

    在kettle中的转换或者作业等资源的存储的仓库称为资源库:分为文件资源库.数据库资源库. 一个转换或者作业可以属于某个资源库或者一个单独的文件形态存在. 一.数据库资源库 1.1在mysql中创建一 ...

  5. AngularJS+ThinkPHP实例教程

    总体思路 thinkphp通过RESTful方式提供数据给angular,前端(包括模板页面)全部由angular来接管. 示例 实现一个用户管理模块,走通增删改查4个操作,通过该示例,演示如何在th ...

  6. 【python】网络编程-SocketServer 实现客户端与服务器间非阻塞通信

    利用SocketServer模块来实现网络客户端与服务器并发连接非阻塞通信.首先,先了解下SocketServer模块中可供使用的类:BaseServer:包含服务器的核心功能与混合(mix-in)类 ...

  7. laravel获取参数

    测试url如下 http://127.0.0.1:8888/testApp/public/testInput?aaa=1&bbb=2 测试代码 Route::get('/testInput', ...

  8. debian之apt源

    美国的 deb http://ftp.us.debian.org/debian stable main contrib non-freedeb-src http://ftp.us.debian.org ...

  9. R语言学习——输入与输出

    导入数据: grades<-read.table("D:/ProgramData/test1.txt",sep="\t") 求均值:mean() 求方差: ...

  10. 夜神模拟器+seleinm抓取手机app(参考资料集合)

    目前准备开始实现这个技术,将看起来还算可靠的参考链接粘贴如下: http://www.cnblogs.com/puresoul/p/4597211.html https://www.cnblogs.c ...