【DeepLearning】Exercise:Vectorization
Exercise:Vectorization
习题的链接:Exercise:Vectorization
注意点:
MNIST图片的像素点已经经过归一化。
如果再使用Exercise:Sparse Autoencoder中的sampleIMAGES.m进行归一化,
将使得训练得到的可视化权值如下图:
更改train.m的参数设置
visibleSize = *; % number of input units
hiddenSize = ; % number of hidden units
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term
更改sampleIMAGES.m
function patches = sampleIMAGES()
% sampleIMAGES
% Returns patches for training load images; % load images from disk patchsize = ; % we'll use 28x28 patches
numpatches = ; % Initialize patches with zeros. Your code will fill in this matrix--one
% column per patch, columns.
patches = zeros(patchsize*patchsize, numpatches); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Fill in the variable called "patches" using data
% from images. patches = images(:, :);
训练得到的W1可视化:
【DeepLearning】Exercise:Vectorization的更多相关文章
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...
- 【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...
- 【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- python3 map,filter和列表推导式
num_list = [11,2,-33,10,7,3,5,43] 1.filter 函数 获取num_list大于5的元素,并返回列表 用lambda表达式实现: # 在python2 中 fil ...
- 数据挖掘中 决策树算法实现——Bash
数据挖掘中 决策树算法实现——Bash 博客分类: 数据挖掘 决策树 bash 非递归实现 标准信息熵 数据挖掘决策树bash非递归实现标准信息熵 一.决策树简介: 关于决策树,几乎是数据挖掘分类算法 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三)安装spark2.2.1
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Mysql写入中文出错
本地调试好像正常,服务器运行报错: UnicodeEncodeError: 'latin-1' codec can't encode character u'\u5206' in position 2 ...
- HttpWebRequest抓取网页数据返回异常:远程服务器返回错误: (503) 服务器不可用
解决方法: HttpWebRequest request = (HttpWebRequest)WebRequest.Create(webURL); //声明一个H ...
- create-react-app时registry的奇怪问题
用React官方给的NPM脚本 create-react-app my-app 在自动安装module的过程中,在安装registry的组件的时候莫名其妙的挂住不动了.界面显示的信息如下: fetch ...
- 鼠标上下滚动支持combobox选中
首先需要jquery插件来支持: 1.代码SVN检出https://github.com/jquery/jquery-mousewheel 2.点击这里下载jquery.mousewheel.zip ...
- 使用Robot Framework做接口测试
http://chuansong.me/n/1858477 1.RF框架 1.1 RF框架介绍Robot Framework 框架是一个通用的测试框架,一直是由诺西网络(Nokia Siemens N ...
- Linux中10个有用的命令行补齐命令
本文转自GeekFan,感觉确实比较极客范啊,[TAB][TAB]补全都知道,但是你知道可以定制化补全吗? ---------------------------------------------- ...
- Unity3d -> Xcode 多个渠道版本发布文件合并
第一步: Users/xxx/.jenkins/jobs/projectname/workspace/build/iOS_iphone 把这里面所有文件拷贝到生成的xcode 工程下的Data目录 如 ...