【DeepLearning】Exercise:Vectorization
Exercise:Vectorization
习题的链接:Exercise:Vectorization
注意点:
MNIST图片的像素点已经经过归一化。
如果再使用Exercise:Sparse Autoencoder中的sampleIMAGES.m进行归一化,
将使得训练得到的可视化权值如下图:

更改train.m的参数设置
visibleSize = *; % number of input units
hiddenSize = ; % number of hidden units
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term
更改sampleIMAGES.m
function patches = sampleIMAGES()
% sampleIMAGES
% Returns patches for training load images; % load images from disk patchsize = ; % we'll use 28x28 patches
numpatches = ; % Initialize patches with zeros. Your code will fill in this matrix--one
% column per patch, columns.
patches = zeros(patchsize*patchsize, numpatches); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Fill in the variable called "patches" using data
% from images. patches = images(:, :);
训练得到的W1可视化:

【DeepLearning】Exercise:Vectorization的更多相关文章
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...
- 【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...
- 【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- Android -- ConditionVariable
线程操作经常用到wait和notify,用起来稍显繁琐,而Android给我们封装好了一个ConditionVariable类,用于线程同步.提供了三个方法block().open().close() ...
- Twitter Lite以及大规模的高性能React渐进式网络应用
Twitter Lite以及大规模的高性能React渐进式网络应用 原文:Twitter Lite and High Performance React Progressive Web Apps at ...
- Mongo如何在多个字段中查询某个关键字?
If a text index has multiple fields in Mongo, how can I do a search in only one field since the weig ...
- NSProxy
NSProxy类在分布式对象架构中是很重要的.由于作用比较特别,NSProxy在Cocoa程序中出现频率很低. NSProxy 是一个抽象类,它为一些表现的像是其它对象替身或者并不存在的对象定义一套A ...
- Git 常用命令 思维导图(转)
Git 是一个很强大的分布式版本控制系统.它不但适用于管理大型开源软件的源代码,管理私人的文档和源代码也有很多优势. 本来想着只把最有用.最常用的 Git 命令记下来,但是总觉得这个也挺有用.那个也用 ...
- linux 查找文件或者服务
[root@localhost ~]# whereis mysql mysql: /usr/bin/mysql /usr/lib/mysql /usr/share/mysql /usr/share/m ...
- Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
在之前的<跟我学SpringMVC>中的<第七章 注解式控制器的数据验证.类型转换及格式化>中已经介绍过SpringMVC集成Bean Validation 1.0(JSR-3 ...
- jquery 和 FormData 最简单图片异步上传
<script src="/scripts/jquery/jquery-3.1.1.min.js"></script> <script type=&q ...
- ZH奶酪:使用PHP调用REST API
原文:http://yuguo.us/weblog/php-rest-api/ 表征状态转移(英文:REpresentational State Transfer,简称REST)是Roy Fieldi ...
- 使用Json.Net解决MVC中各种json操作
最近收集了几篇文章,用于替换MVC中各种json操作,微软mvc当然用自家的序列化,速度慢不说,还容易出问题,自定义性也太差,比如得特意解决循环引用的问题,比如datetime的序列化格式,比如性能. ...