UVa 1220 Hali-Bula的晚会(树的最大独立集)
https://vjudge.net/problem/UVA-1220
题意:
公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司。要求选尽量多的人,但不能同时选择一个人和他的直属上司。输出最多能选多少人并判断是否唯一。
思路:
树的最大独立集问题。就是需要额外判定是否是唯一的。
因为输入的都是人名,所以首先就是用map容器来处理,上下属的关系就用vector容器来处理。
d[u][1]表示以u为根的子树中,选u点能得到的最大人数,f[u][1]判断这种方案是否唯一。
d[u][0]表示以u为根的子树中,不选u点能得到的最大人数,f[u][0]判断这种方案是否唯一。
状态转移方程其实不是很难。首先分析d[u][1],因为u选了,所以u的子结点都不能选,它的子节点的状态只能是这样的,所以此时d[u][1]=sum(d[v][0]|v是u的子节点)。容易想到f[v][0]都为唯一时,f[u][1]才是唯一的。
其次是d[u][0],此时u的子节点可选可不选,所以我们需要挑选出更大的那个,每个子节点都是这样处理,最后像上面那样加起来就可以了。转移方程就是d[u][0]=sum(max(d[v][0],d[v][1]))。方案唯一值的判定和上面是一样的,就是分析你所挑选的更大的那个。
根结点值依赖于子节点,所以需要用DFS来处理。
#include<iostream>
#include<string>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
using namespace std; const int maxn = +; int n, cnt;
string s1, s2; int d[maxn][], f[maxn][]; map<string, int> id;
vector<int> sons[maxn]; void solve(int u)
{
//最下属的只有两种情况
if (sons[u].size() == )
{
d[u][] = ;
d[u][] = ;
return;
}
int k = sons[u].size(); for (int i = ; i < k; i++)
{
int son = sons[u][i];
//树形的DFS
solve(son);
d[u][] += d[son][];
//一旦有子节点不唯一,它也不唯一
if (!f[son][]) f[u][] = ;
//u不选时,它的子节点可选可不选,此时需要选个大的
d[u][] += max(d[son][], d[son][]); //判断是否唯一
if (d[son][]>d[son][] && !f[son][]) f[u][] = ;
else if (d[son][] > d[son][] && !f[son][] ) f[u][] = ;
else if (d[son][] == d[son][]) f[u][] = ; }
++d[u][];
} int main()
{
//freopen("D:\\txt.txt", "r", stdin);
while (cin >> n && n)
{
memset(d, , sizeof(d));
//初始化都为唯一
for (int i = ; i <= n; i++)
f[i][] = f[i][] = ;
id.clear();
for (int i = ; i <= n; i++)
sons[i].clear();
cnt = ; cin >> s1;
id[s1] = ++cnt;
for (int i = ; i < n; i++)
{
cin >> s1 >> s2;
if (!id[s1]) id[s1] = ++cnt;
if (!id[s2]) id[s2] = ++cnt;
sons[id[s2]].push_back(id[s1]);
} solve(); if (d[][] == d[][]) printf("%d No\n", d[][]);
else if (d[][] > d[][]) printf("%d %s\n", d[][], !f[][] ? "No" : "Yes");
else printf("%d %s\n", d[][], !f[][] ? "No" : "Yes");
}
return ;
}
UVa 1220 Hali-Bula的晚会(树的最大独立集)的更多相关文章
- POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)
POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...
- Uva 1220,Hali-Bula 的晚会
题目链接:https://uva.onlinejudge.org/external/12/1220.pdf 题意: 公司n个人,形成一个数状结构,选出最大独立集,并且看是否是唯一解. 分析: d(i) ...
- UVa 1220 Party at Hali-Bula 晚会
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #i ...
- UVa 1220 - Party at Hali-Bula(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- POJ 2342 树的最大独立集
题意:在树的最大独立集的基础上,加上权值.求最大. 分析: 采用刷表的方式写记忆化,考虑一个点选和不选,返回方式pair 型. 首先,无根树转有根树,dp(root). 注意的是:u不选,那么他的子节 ...
- POJ 3342 Party at Hali-Bula (树形dp 树的最大独立集 判多解 好题)
Party at Hali-Bula Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5660 Accepted: 202 ...
- 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp
目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...
- HDU - 1520 Anniversary party (树的最大独立集)
Time limit :1000 ms :Memory limit :32768 kB: OS :Windows There is going to be a party to celebrate t ...
- UVa 1220 (树的最大独立集) Party at Hali-Bula
题意: 有一棵树,选出尽可能多的节点是的两两节点不相邻,即每个节点和他的子节点只能选一个.求符合方案的最大节点数,并最优方案判断是否唯一. 分析: d(u, 0)表示以u为根的子树中,不选u节点能得到 ...
随机推荐
- 教你在Android手机上使用全局代理
前言:在Android上使用系统自带的代理,限制灰常大,仅支持系统自带的浏览器.这样像QQ.飞信.微博等这些单独的App都不能使用系统的代理.如何让所有软件都能正常代理呢?ProxyDroid这个软件 ...
- word使用
1:插入图片,显示不完整,需要>点击上方的段落,选择单倍行距 2:wps 可以直接右键选择保存文件中的图片 3:word中换行符的标识符为^p ,可以用来替换换行符. 4:使word中某一段背 ...
- 使用LinkedList模拟栈数据结构的集合
封装MyStack类 public class MyStack { private LinkedList link; //调用MyStack创建对象的时候其实是调用的LinkedList创建的是Lin ...
- [svc]sublime text3设置py环境最佳姿势
搞个py虚拟环境 待sublim调用 - for windows pip install virtualenv pip install virtualenvwrapper pip install vi ...
- 阻止提交按钮的默认 action
使用 preventDefault() 函数来阻止对表单的提交. 示例代码如下: <html><head><script type="text/javascri ...
- [LeetCode] questions conclustion_BFS, DFS
BFS, DFS 的题目总结. Directed graph: Directed Graph Loop detection and if not have, path to print all pat ...
- C#读取Excel,Access数据库
出自:http://blog.csdn.net/limpire/article/details/2599760 使用 OpenRowSet 和 OpenDataSource 访问 Excel 97-2 ...
- file_get_post实现post请求
function Post($url, $post = null){ $context = array(); if (is_array($post)) { ksort($p ...
- n的相反数
实例十:n的相反数 方法:result=(~n)+1 正数 负数 原数 0000 0011 1111 1111补码 1111 1100 0000 0010加一 1111 1011 0000 001 ...
- yii2csrf攻击
第一种解决办法是关闭Csrf public function init(){ $this->enableCsrfValidation = false; } 第二种解决办法是在form表单中加入隐 ...