https://vjudge.net/problem/UVA-1220

题意:

公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司。要求选尽量多的人,但不能同时选择一个人和他的直属上司。输出最多能选多少人并判断是否唯一。

思路:

树的最大独立集问题。就是需要额外判定是否是唯一的。

因为输入的都是人名,所以首先就是用map容器来处理,上下属的关系就用vector容器来处理。

d[u][1]表示以u为根的子树中,选u点能得到的最大人数,f[u][1]判断这种方案是否唯一。

d[u][0]表示以u为根的子树中,不选u点能得到的最大人数,f[u][0]判断这种方案是否唯一。

状态转移方程其实不是很难。首先分析d[u][1],因为u选了,所以u的子结点都不能选,它的子节点的状态只能是这样的,所以此时d[u][1]=sum(d[v][0]|v是u的子节点)。容易想到f[v][0]都为唯一时,f[u][1]才是唯一的。

其次是d[u][0],此时u的子节点可选可不选,所以我们需要挑选出更大的那个,每个子节点都是这样处理,最后像上面那样加起来就可以了。转移方程就是d[u][0]=sum(max(d[v][0],d[v][1]))。方案唯一值的判定和上面是一样的,就是分析你所挑选的更大的那个。

根结点值依赖于子节点,所以需要用DFS来处理

 #include<iostream>
#include<string>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
using namespace std; const int maxn = +; int n, cnt;
string s1, s2; int d[maxn][], f[maxn][]; map<string, int> id;
vector<int> sons[maxn]; void solve(int u)
{
//最下属的只有两种情况
if (sons[u].size() == )
{
d[u][] = ;
d[u][] = ;
return;
}
int k = sons[u].size(); for (int i = ; i < k; i++)
{
int son = sons[u][i];
//树形的DFS
solve(son);
d[u][] += d[son][];
//一旦有子节点不唯一,它也不唯一
if (!f[son][]) f[u][] = ;
//u不选时,它的子节点可选可不选,此时需要选个大的
d[u][] += max(d[son][], d[son][]); //判断是否唯一
if (d[son][]>d[son][] && !f[son][]) f[u][] = ;
else if (d[son][] > d[son][] && !f[son][] ) f[u][] = ;
else if (d[son][] == d[son][]) f[u][] = ; }
++d[u][];
} int main()
{
//freopen("D:\\txt.txt", "r", stdin);
while (cin >> n && n)
{
memset(d, , sizeof(d));
//初始化都为唯一
for (int i = ; i <= n; i++)
f[i][] = f[i][] = ;
id.clear();
for (int i = ; i <= n; i++)
sons[i].clear();
cnt = ; cin >> s1;
id[s1] = ++cnt;
for (int i = ; i < n; i++)
{
cin >> s1 >> s2;
if (!id[s1]) id[s1] = ++cnt;
if (!id[s2]) id[s2] = ++cnt;
sons[id[s2]].push_back(id[s1]);
} solve(); if (d[][] == d[][]) printf("%d No\n", d[][]);
else if (d[][] > d[][]) printf("%d %s\n", d[][], !f[][] ? "No" : "Yes");
else printf("%d %s\n", d[][], !f[][] ? "No" : "Yes");
}
return ;
}

UVa 1220 Hali-Bula的晚会(树的最大独立集)的更多相关文章

  1. POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)

    POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...

  2. Uva 1220,Hali-Bula 的晚会

    题目链接:https://uva.onlinejudge.org/external/12/1220.pdf 题意: 公司n个人,形成一个数状结构,选出最大独立集,并且看是否是唯一解. 分析: d(i) ...

  3. UVa 1220 Party at Hali-Bula 晚会

    #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #i ...

  4. UVa 1220 - Party at Hali-Bula(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. POJ 2342 树的最大独立集

    题意:在树的最大独立集的基础上,加上权值.求最大. 分析: 采用刷表的方式写记忆化,考虑一个点选和不选,返回方式pair 型. 首先,无根树转有根树,dp(root). 注意的是:u不选,那么他的子节 ...

  6. POJ 3342 Party at Hali-Bula (树形dp 树的最大独立集 判多解 好题)

    Party at Hali-Bula Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5660   Accepted: 202 ...

  7. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  8. HDU - 1520 Anniversary party (树的最大独立集)

    Time limit :1000 ms :Memory limit :32768 kB: OS :Windows There is going to be a party to celebrate t ...

  9. UVa 1220 (树的最大独立集) Party at Hali-Bula

    题意: 有一棵树,选出尽可能多的节点是的两两节点不相邻,即每个节点和他的子节点只能选一个.求符合方案的最大节点数,并最优方案判断是否唯一. 分析: d(u, 0)表示以u为根的子树中,不选u节点能得到 ...

随机推荐

  1. CSS 基础知识

    CSS 实例(CSS声明总是以分号(;)结束,声明组以大括号({})括起来:) CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明: 选择器通常是您需要改变样式的 HTML 元素. 每条声明 ...

  2. java客户端调用ftp上传下载文件

    1:java客户端上传,下载文件. package com.li.utils; import java.io.File; import java.io.FileInputStream; import ...

  3. react native 示例代码

    https://react.rocks/tag/ReactNative?show=60 https://github.com/ReactNativeNews/React-Native-Apps

  4. ftp命令行敲不了

    最先安装了vsftpd,但是命令行敲ftp老是不行 解决方案:ftp命令是ftp客户端,vsftp是ftp服务器,两者不是一个概念.你需要安装ftp客户端 yum install ftp 可以自动安装 ...

  5. 下载YouTube视频的方法

    这个网站就可以: http://www.clipconverter.cc/ 更多的网站及介绍参考知乎:http://www.zhihu.com/question/19964181

  6. 使用i5ting_toc 预览 markdown 文件

    i5ting_toc__tree https://github.com/i5ting/i5ting_ztree_toc 是去哪儿网前段架构师狼叔编写的一个jQuery插件,用于将markdown 转化 ...

  7. 小试---EF5.0简介

    简介 实体框架Entity Framework 是 ADO.NET 中的一组支持开发面向数据的软件应用程序的技术.是微软的一个ORM框架.简单的说就是把关系型数据库映射成面向对象模型. 一篇更加详细的 ...

  8. Python:在windows下创建虚拟环境

    我们在用python开发的时候,随着开发应用的增多,比如这个项目用django开发后台,之后又用scrapy来开发爬虫应用等,如果不用虚拟环境这些软件包都会被放到python的site-package ...

  9. iOS之第三方库以及XCode插件介绍

    前言 第三方库是现在的程序员离不开的东西 不光是APP开发 基本上所有的商业项目 都会或多或少的使用到第三方库 Github上Star>100的开源库数量如下 可以看到JS以绝对的优势排名第一 ...

  10. 最新 mysql登录报错“Access denied for user 'root'@'localhost' (using password: NO”的处理方法

    1.关闭正在运行的MySQL.2.打开DOS窗口,转到mysql\bin目录.3.输入mysqld --skip-grant-tables回车.如果没有出现提示信息,那就对了.(正常的情况是光标闪烁没 ...