苏君君出了一道题,是牛客网上面的:

输入一个int型整数,输出该数二进制表示中1的个数。其中负数用补码表示。

其实这道题并不难,大家很容易想到的解法是转成字符串的思路,即如下所示:

    public static int NumberOf1(int n) {
String s = Integer.toBinaryString(n);
int count = 0;
for (int i = 0; i < s.length(); i++) {
if(s.charAt(i) == '1'){
count++;
}
}
return count;
}

但是这样运算速度不快。经过魏印福的点拨,知道了Redis中采用的variable-precision SWAR算法,这个算法非常厉害,因为他没有按照常规思路,而是采用了分组移位的思路。

参见博客:https://blog.csdn.net/jasonbaoly/article/details/47336899

算法实现:

int SWAR(unsigned int i)
{
i = i - ((i >> ) & 0x55555555);
i = (i & 0x33333333) + ((i >> ) & 0x33333333);
return (((i + (i >> )) & 0x0F0F0F0F) * 0x01010101) >> ;
}

下面逐行解释一下:

第一行

i = i - ((i >> ) & 0x55555555);

0x55555555二进制的标识方式如下:

0x55555555 = 0b01010101010101010101010101010101

可以看到的规律是,奇数位为1,偶数位为0。
表达式((i >> 1) & 0x55555555),将i右移一位,并将所有偶数位设置为0.(等效的,我们也可以通过& 0xAAAAAAAA将所有奇数位设置成0,然后再将结果右移1位)为了方便起见,我们将这个中间值命名为j。
当我们将中间值j从原始值i中减去会发生什么?那让我们来看看如果i只有两位是什么情况。

    i           j         i - j
----------------------------------
= 0b00 = 0b00 = 0b00
= 0b01 = 0b00 = 0b01
= 0b10 = 0b01 = 0b01
= 0b11 = 0b01 = 0b10

最后的结论就是i-j的十进制结果就是位数组中1出现的次数。
那么如果i不只是两位数组呢?实际上,很容易发现i-j的最低两位仍然如上表所示,三四位,五六位也是一个道理,等等。需要注意的是:

  • 由于& 0x55555555的巧妙用法,尽管>> 1,i-j的最低两位不会被i的第三位或者更高的位影响。
  • 由于j的最低两位永远不可能在比i的最低两位大。这个减法永远不会向i的第三位借位,因此:对于i-j来说,i的最低两位不会影响i的第三位或者更高位。

实际上这一行就是将32位数组分为16个两位为单位的组,每组分别计算1出现的次数。

第二行:

i = (i & 0x33333333) + ((i >> ) & 0x33333333);

与第一行对比,这一行非常的简单。首先,来看一下0x33333333的二进制表示:

0x33333333 = 0b00110011001100110011001100110011

i & 0x33333333的目的是以4位为分组取四位中的后两位。而(i >> 2) & 0x33333333在把i右移两位后做同样的工作。然后把它们结果加起来。
因此,实际上,这行做的工作就是将最低的两位1出现的次数和最低三四位的1出现的次数相加,得到最低四位的1出现的次数。同样的对于输入的8个四位分组(=16进制数)都是一样的。

第三行:

return (((i + (i >> )) & 0x0F0F0F0F) * 0x01010101) >> ;

(i + (i >> 4)) & 0x0F0F0F0F除了这次是用临近的4位1出现的次数系相加,得到8位为一组的1出现的次数,以外原理跟前一行一样。(和上一行有所不同的是,我们可以把&去掉,因为我们知道原始输入8位不可能出现超过8个1因此二进制值不会超过4位。)
现在我们有一个三十二位数,由四个字节组成,每个字节保存着原始输入中为1的位的数量。(我们把它们称作A,B,C和D。)那么为什么我们用0x01010101乘以这个值(命名为k)?

由于:

0x01010101 = ( << ) + ( << ) + ( << ) + 

可得:

k * 0x01010101 = (k << ) + (k << ) + (k << ) + k

因此,最高位总和就是最终的结果,如下图所示:

k * 0x01010101最高位就是原始输入的1出现次数的最终结果。>> 24只是简单的将最高位的值移到最低位。

另一种更好理解的写法:

int SWAR(unsigned int i)
{
x = (x & 0x55555555) + ((x >> ) & 0x55555555);
x = (x & 0x33333333) + ((x >> ) & 0x33333333);
x = (x & 0x0f0f0f0f) + ((x >> ) & 0x0f0f0f0f);
i = (i*(0x01010101) >> )
return i;
}

[算法]从一道题引出variable-precision SWAR算法的更多相关文章

  1. variable precision SWAR算法

    计算二进制形式中1的数量这种问题,在各种刷题网站上比较常见,以往都是选择最笨的遍历方法“蒙混”过关.在了解Redis的过程中接触到了variable precision SWAR算法(以下简称VP-S ...

  2. variable-precision SWAR算法介绍

    BITCOUNT命令是统计一个位数组中非0进制位的数量,数学上称作:”Hanmming Weight“ 目前效率最好的为variable-precision SWAR算法,可以常数时间内计算出多个字节 ...

  3. variable-precision SWAR算法:计算Hamming Weight

    variable-precision SWAR算法:计算Hamming Weight 转自我的Github 最近看书看到了一个计算Hamming Weight的算法,觉得挺巧妙的,纪录一下. Hamm ...

  4. 【智能算法】变邻域搜索算法(Variable Neighborhood Search,VNS)超详细解析和TSP代码实例以及01背包代码实例

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 00 目录 局部搜索再次科普 变邻域搜索 造轮子写代码 01 局部搜索科普三连 虽然之前做的很多篇启发式的算法都有跟大家提过局部 ...

  5. EM算法浅析(一)-问题引出

    EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.基本认识 EM(Expectation Maximization Algorithm)算法即期望 ...

  6. 【算法】变邻域搜索算法(Variable Neighborhood Search,VNS)超详细一看就懂的解析

    更多精彩尽在微信公众号[程序猿声] 变邻域搜索算法(Variable Neighborhood Search,VNS)一看就懂的解析 00 目录 局部搜索再次科普 变邻域搜索 造轮子写代码 01 局部 ...

  7. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  8. 国密SM4对称算法实现说明(原SMS4无线局域网算法标准)

    国密SM4对称算法实现说明(原SMS4无线局域网算法标准) SM4分组密码算法,原名SMS4,国家密码管理局于2012年3月21日发布:http://www.oscca.gov.cn/News/201 ...

  9. 经典算法题每日演练——第十七题 Dijkstra算法

    原文:经典算法题每日演练--第十七题 Dijkstra算法 或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划” 这些经典 ...

随机推荐

  1. Macos mysql 8.0.11 添加配置文件

    mac 安装mysql 后,没有配置文件,如果需要添加配置文件,需要在/etc 目录下面添加 my.cnf 文件. 添加方法 打开文件命令:sudo vi  /etc/my.cnf 文件添加内容: [ ...

  2. 使用git上传项目到码云

    一.git安装 1.首先在官方网站下载git工具,或者根据以下链接进行下载:http://download.csdn.net/detail/qq_27501889/9788879(此链接版本为git- ...

  3. 基于 vue 全家桶的 spa 项目脚手架

    项目简介 Github: https://github.com/hanan198501/vue-spa-template 我们基于 vue-cli 脚手架生成项目模板做了一些改造,加入了 vue-ro ...

  4. 行为类模式(八):状态(State)

    定义 当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类. 状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况.把状态的判断逻辑转移到表示不同状态的一系列类中,可以 ...

  5. 加快android studio 编译速度(已更新至Android Studio 3.3.1)

    1.加快AS启动速度 “Help”-"Edit Custom Properties...",在文件中输入 # custom Android Studio properties di ...

  6. 每日英语:Researchers Study How Excess Fat Cells Interfere With Organ Function, Metabolism

    Why are some obese people healthy, apparently protected from the damaging effects of excess fat on t ...

  7. 每日英语:The Most Destructive, Unpredictable Force in Tech

    What's the most destructive force in the tech world, the thing that has nearly killed BlackBerry, pu ...

  8. MySQL load数据的时候自动更新时间

    MySQL load数据的时候自动更新时间 前提 CREATE TABLE table_name ( dt varchar(255) NULL , ctime timestamp NULL ON UP ...

  9. Leetcode:Flatten Binary Tree to Linked List 解题报告

    Flatten Binary Tree to Linked List Given a binary tree, flatten it to a linked list in-place. For ex ...

  10. 【Professional English】Words Summary

    01.数据库管理系统(Database Management Systems,DBMS) A database management system (DBMS) is a computer softw ...