转载 IMP时数据库的IO性能监控,并提供IOPS的计算方法
分类: Linux
[root@ntkdb oradata]# iostat -x 1 10
Linux 2.6.9-67.ELlargesmp (ntkdb) 07/15/2011
avg-cpu: %user %nice %sys %iowait %idle
0.00 0.00 0.00 6.25 93.75
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
cciss/c0d0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cciss/c0d1 0.00 162.00 0.00 162.00 0.00 2592.00 0.00 1296.00 16.00 0.99 6.12 6.12 99.10
cciss/c0d2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cciss/c0d3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dm-6 0.00 0.00 0.00 324.00 0.00 2592.00 0.00 1296.00 8.00 1.98 6.11 3.06 99.10
备注:(转载)
rrqm/s: 每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s: 每秒进行 merge 的写操作数目。即 delta(wmerge)/s
r/s: 每秒完成的读 I/O 设备次数。即 delta(rio)/s
w/s: 每秒完成的写 I/O 设备次数。即 delta(wio)/s
rsec/s: 每秒读扇区数。即 delta(rsect)/s
wsec/s: 每秒写扇区数。即 delta(wsect)/s
rkB/s: 每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)
wkB/s: 每秒写K字节数。是 wsect/s 的一半。(需要计算)
avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)
avgqu-sz: 平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。
await: 平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm: 平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)
%util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)
如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘存在瓶颈。
cciss/c0d1明显看出i/o负载过重。估计是数据文件划分的不合理。
附录:评估iops的方法(转载)
iostat 命令提供信息包括IOPS 和每个I/O 数据处理的总额.可使用iostat -x 查看.顺序的workload是同时读顺序请求大量的数据.这包括的应用,比如有商业数据库(database)在执行大量的查询和流媒体服务.在这个workload 中,KB per I/O 的比率应该是很高的.Sequential workload 是可以同时很快的移动大量数据.如果每个I/O 都节省了时间,那就意味了能带来更多的数据处理.
# iostat -x 1
avg-cpu: %user %nice %sys %idle
0.00 0.00 57.1 4 42.86
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 12891.43 0.00 105.71 0.00 1 06080.00 0.00 53040.00 1003.46 1099.43 3442.43 26.49 280.00
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 12857.14 0.00 5.71 0.00 105782.86 0.00 52891.43 18512.00 559.14 780.00 490.00 280.00
/dev/sda3 0.00 34.29 0.00 100.00 0.00 297.14 0.00 148.57 2.97 540.29 594.57 24.00 240.00
avg-cpu: %user %nice %sys %idle
0.00 0.00 23.53 76.47
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 17320.59 0.00 102.94 0.00 142305.88 0.00 71152.94 1382.40 6975.29 952.29 28.57 294.12
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 16844.12 0.00 102.94 0.00 138352.94 0.00 69176.47 1344.00 6809.71 952.29 28.57 294.12
/dev/sda3 0.00 476.47 0.00 0.00 0.00 952.94 0.00 1976.47 0.00 165.59 0.00 0.00 276.47
评估IOPS 的效能,可用每秒读写I/O 字节数除以每秒读写IOPS 数得出,比如:
rkB/s 除以 r/s
wkB/s 除以 w/s
53040/105 = 505KB per I/O
71152/102 = 697KB per I/O
在上面例子可看出,每次循环下,/dev/sda 的per I/O 都在增加.
4.2.2.2. Random I/O(随机IO)
Random的worklaod环境下,不依赖于数据大小的多少,更多依赖的是磁盘的IOPS 数.Web和Mail 服务就是典型的Random workload.I/O 请求内容都很小.Random workload是同时每秒会有更多的请求数产生.所以,磁盘的IOPS 数是关键.
# iostat -x 1
avg-cpu: %user %nice %sys %idle
2.04 0.00 97.96 0.00
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 633.67 3.06 102.31 24.49 5281.63 12.24 2640.82 288.89 73.67 113.89 27.22 50.00
/dev/sda1 0.00 5.10 0.00 2.04 0.00 57.14 0.00 28.57 28.00 1.12 55.00 55.00 11.22
/dev/sda2 0.00 628.57 3.06 100.27 24.49 5224.49 12.24 2612.24 321.50 72.55 121.25 30.63 50.00
/dev/sda3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg-cpu: %user %nice %sys %idle
2.15 0.00 97.85 0.00
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 41.94 6.45 130.98 51.61 352.69 25.81 3176.34 19.79 2.90 286.32 7.37 15.05
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 41.94 4.30 130.98 34.41 352.69 17.20 3176.34 21.18 2.90 320.00 8.24 15.05
/dev/sda3 0.00 0.00 2.15 0.00 17.20 0.00 8.60 0.00 8.00 0.00 0.00 0.00 0.00
计算方式和之前的公式一致:
2640/102 = 23KB per I/O
3176/130 = 24KB per I/O
转载 IMP时数据库的IO性能监控,并提供IOPS的计算方法的更多相关文章
- 磁盘IO性能监控(Linux 和 Windows)
磁盘IO性能监控(Linux 和 Windows) 作者:终南 <li.zhongnan@hotmail.com> 磁盘的IO性能是衡量计算机总体性能的一个重要指标.Linux提供了i ...
- 018 磁盘 IO 性能监控/压测工具(sar、iotop、fio、iostat)
1 sar 命令查看当前磁盘 IO 读写 sar(System Activity Reporter 系统活动情况报告)是 Linux 上最为全面的系统性能分析工具之一,可以从多方面对系统的活动进行报告 ...
- Oracle 下基于 DBMS_RESOURCE_MANAGER 包估算数据库存储 IO 性能
:first-child { margin-top: 0; } blockquote > :last-child { margin-bottom: 0; } img { border: 0; m ...
- MySQL数据库在IO性能优化方面的设置选择(硬件)
提起MySQL数据库在硬件方面的优化无非是CPU.内存和IO.下面我们着重梳理一下关于磁盘I/O方面的优化. 1.磁盘冗余阵列RAID RAID(Redundant Array of Inexpens ...
- Linux的IO性能监控
一般使用iostat命令监控I/O性能1.iostat命令可用参数列表: OPTIONS -c Display the CPU utilization report. -d Display the d ...
- mysql性能监控qps,tps,iops
qps 每秒处理的查询数tps 每秒处理的事务数IOPS,每秒磁盘进行的I/O操作次数 给个方法或者思路,用啥工具或者命令,如何看,值是多少属于正常范围之内呢? Information from we ...
- 使用SQL-Server分区表功能提高数据库的读写性能
首先祝大家新年快乐,身体健康,万事如意. 一般来说一个系统最先出现瓶颈的点很可能是数据库.比如我们的生产系统并发量很高在跑一段时间后,数据库中某些表的数据量会越来越大.海量的数据会严重影响数据库的读写 ...
- 转载:SqlServer数据库性能优化详解
本文转载自:http://blog.csdn.net/andylaudotnet/article/details/1763573 性能调节的目的是通过将网络流通.磁盘 I/O 和 CPU 时间减到最小 ...
- Performance Monitor4:监控SQL Server的IO性能
SQL Server的IO性能受到物理Disk的IO延迟和SQL Server内部执行的IO操作的影响.在监控Disk性能时,最主要的度量值(metric)是IO延迟,IO延迟是指从Applicati ...
随机推荐
- Visual Studio的Debugger Visualizers
在英文网站上找到一份清单,列出了Visual Studio的Debugger Visualizers,觉得很好,记下来备注并分享: ASP, WEB:ASP.NET control graph vis ...
- OSPF邻居状态机
当OSPF邻居建立的过程之中,路由器在和邻居达到完全邻接关系之前,要经过几个状态.这些状态在OSPF RFC2328有相关的定义,这些状态分别是Down, Attempt, Init, 2-Way, ...
- Google File System 学习
摘要 Google的人设计并实现了Google File System,一个可升级的分布式文件系统,用于大的分布式数据应用.可以运行在廉价的日用硬件上,具备容错性,且为大量客户端提供了高聚合的性能. ...
- Batch normalization:accelerating deep network training by reducing internal covariate shift的笔记
说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解. 下面是我的理解,当同行看到的话,留言交流交流啊!!!!! 这篇文章的中心点:围绕着如何降低 internal covari ...
- SpringMVC系列(七)视图解析器和视图
在springmvc.xml里面配置视图解析器 <!-- 配置视图解析器: 如何把 handler 方法返回值解析为实际的物理视图 --> <bean class="org ...
- Java如何处理异常层次结构?
在Java编程中,如何处理异常层次结构? 以下是异常层次结构的示例图 - 此示例显示如何通过扩展Exception类来处理异常层次结构. package com.yiibai; class Anima ...
- e832. 从JTabbedPane中移动卡片
To move a tab, it must first be removed and then reinserted into the tabbed pane as a new tab. Unfor ...
- e784. 监听对JList选择变动
When the set of selected items is changed, either by the user or programmatically, a list selection ...
- 转载:手把手教你做iOS推送
手把手教你做iOS推送 http://www.cocoachina.com/industry/20130321/5862.html
- k8s sidecar, Ambassador, Adapter containers
When you start thinking in terms of Pods, there are naturally some general patterns of modular appli ...