Python+Tensorflow的CNN技术快速识别验证码

文章来源于: https://www.jianshu.com/p/26ff7b9075a1

验证码处理的流程是:验证码分析和处理—— tensorflow安装 —— 模型训练 —— 模型预测

需要的准备。

  1. 安装TensorFlow

  2.  PIL

  3. numpy

  4. 用于训练的图片

0.文件目录:

  红色部分有用,其他不用

  

1. 训练模型的图片:链接:https://pan.baidu.com/s/1kpgt7Pc-ni4WnN6qj8U-pw 密码:nzea

2.  训练模型代码:

  训练好的模型:链接:https://pan.baidu.com/s/1dNpEtguITKBgbsUU6tCluQ 密码:j07f

from PIL import Image
import numpy as np
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']=''
import random IMAGE_HEIGHT = 114
IMAGE_WIDTH = 450
MAX_CAPTCHA = 6
CHAR_SET_LEN = 26 def get_name_and_image():
all_image = os.listdir('C:\\Users\\xuchunlin\\PycharmProjects\\ML\\20180402\\captcha4\\')
random_file = random.randint(0, 3429)
base = os.path.basename('C:\\Users\\xuchunlin\\PycharmProjects\\ML\\20180402\\captcha4\\' + all_image[random_file])
name = os.path.splitext(base)[0]
image = Image.open('C:\\Users\\xuchunlin\\PycharmProjects\\ML\\20180402\\captcha4\\' + all_image[random_file])
image = np.array(image)
return name, image def name2vec(name):
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
for i, c in enumerate(name):
idx = i * 26 + ord(c) - 97
vector[idx] = 1
return vector def vec2name(vec):
name = []
for i in vec:
a = chr(i + 97)
name.append(a)
return "".join(name) # 生成一个训练batch
def get_next_batch(batch_size=64):
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN]) for i in range(batch_size):
name, image = get_name_and_image()
batch_x[i, :] = 1*(image.flatten())
batch_y[i, :] = name2vec(name)
return batch_x, batch_y #################################################### X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
# 3 conv layer
w_c1 = tf.Variable(w_alpha * tf.random_normal([5, 5, 1, 32]))
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob) w_c2 = tf.Variable(w_alpha * tf.random_normal([5, 5, 32, 64]))
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob) w_c3 = tf.Variable(w_alpha * tf.random_normal([5, 5, 64, 64]))
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob) # Fully connected layer
w_d = tf.Variable(w_alpha * tf.random_normal([15 * 57 * 64, 1024]))
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob) w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
return out # 训练
def train_crack_captcha_cnn():
output = crack_captcha_cnn()
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) step = 0
while True:
batch_x, batch_y = get_next_batch(64)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.5})
print(step, loss_) # 每100 step计算一次准确率
if step % 100 == 0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print(step, acc)
# 如果准确率大于60%,保存模型,完成训练
if acc > 0.6:
saver.save(sess, "./crack_capcha.model", global_step=step)
break step += 1 train_crack_captcha_cnn()

3.  模型测试代码:

    

def crack_captcha():
output = crack_captcha_cnn() saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
n = 1
while n <= 10:
text, image = get_name_and_image()
image = 1 * (image.flatten())
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})
vec = text_list[0].tolist()
predict_text = vec2name(vec)
print("正确: {} 预测: {}".format(text, predict_text))
n += 1 crack_captcha()

训练代码和测试代码文件: 链接:https://pan.baidu.com/s/1VY9rYZizCEjHzim3-XaGyw 密码:epv2

结果展示:

你会发现识别率并不高,那是因为上面训练模型中有这几行代码

         # 如果准确率大于60%,保存模型,完成训练
if acc > 0.6:
saver.save(sess, "./crack_capcha.model", global_step=step)
break

设定的准确率只有百分之六十,如果时间充足的话,可以设置0.99或者0.98.会得到一个不错的模型。

详细讲解请去原网址看,地址:https://www.jianshu.com/p/26ff7b9075a1

所有学习资料:链接:https://pan.baidu.com/s/19BoO5sUhLrzpL0a9_rNTRQ 密码:q4ri

  

Python Tensorflow CNN 识别验证码的更多相关文章

  1. tensorflow识别验证码(2)-tensorflow 编写CNN 识别验证码

    1. 导入依赖包 #coding:utf-8 from gen_captcha import gen_captcha_text_and_image from gen_captcha import nu ...

  2. CNN识别验证码2

    获得验证码图片的俩个来源: 1.有网站生成验证码图片的源码 2.通过python的requests下载验证码图片当我们的训练样本 我们通过第一种方式来得到训练样本,下面是生成验证码的php程序: &l ...

  3. python 基于机器学习识别验证码

    1.背景    验证码自动识别在模拟登陆上使用的较为广泛,一直有耳闻好多人在使用机器学习来识别验证码,最近因为刚好接触这方面的知识,所以特定研究了一番.发现网上已有很多基于machine learni ...

  4. CNN识别验证码1

    之前学习python的时候,想尝试用requests实现自动登陆,但是现在网站登陆都会有验证码保护,主要是为了防止暴力破解,任意用户注册.最近接触深度学习,cnn能够进行图像识别,能够进行验证码识别. ...

  5. 【python】入门级识别验证码

    前情:这篇文章所提及的内容是博主上个暑假时候做的,一直没有沉下心来把自己的心得写在纸面上,所幸这个假期闲暇时候比较多,想着能写多少是多少,于是就有了此篇. 验证码?我也能破解? 关于验证码的介绍就不多 ...

  6. python,tensorflow,CNN实现mnist数据集的训练与验证正确率

    1.工程目录 2.导入data和input_data.py 链接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA 提取码:4nnl 3.CNN.py i ...

  7. 吴裕雄--天生自然python学习笔记:python 用 Tesseract 识别验证码

    用 Selenium 包实现网页自动化操作的案例中,发现很多网页都因 需输入图形验证码而导致实验无法进行 . 解决的办法就是对验证码进行识别 . 识 别的方法之 一 是通过图形处理包将验证码的大部分背 ...

  8. 强智教务系统验证码识别 Tensorflow CNN

    强智教务系统验证码识别 Tensorflow CNN 一直都是使用API取得数据,但是API提供的数据较少,且为了防止API关闭,先把验证码问题解决 使用Tensorflow训练模型,强智教务系统的验 ...

  9. tensorFlow(六)应用-基于CNN破解验证码

    TensorFlow基础见前博客 简介 传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别.本教程将验证码识别问题转化为分类的问题,实现对验证码进行整体识别. 步骤简介 本教程一共分为四 ...

随机推荐

  1. 转:FSMT:文件服务器从03迁移到08R2实战演练

    另外参见:http://www.canway.net/Lists/CanwayOriginalArticels/DispForm.aspx?ID=282 以前做过一个项目,是把文件服务器从03升级到0 ...

  2. Linux中找出占用内存最多的前N个进程

    一.使用ps命令 ps -aux | sort -k4nr | head -N *命令详解: 1. head:-N可以指定显示的行数,默认显示10行. 2. ps:参数a指代all——所有的进程,u指 ...

  3. Data De-duplication

    偶尔看到data deduplication的博客,还挺有意思,记录之 http://blog.csdn.net/liuben/article/details/5829083?reload http: ...

  4. Java 基础【15】 压缩与解压缩

    Java.util.zip 提供用于读写标准 ZIP 和 GZIP 文件格式的类. 还包括使用 DEFLATE 压缩算法(用于 ZIP 和 GZIP 文件格式)对数据进行压缩和解压缩的类. 依赖 Jd ...

  5. poi导出excel合并单元格(包括列合并、行合并)

    1 工程所需jar包如下:commons-codec-1.5.jarcommons-logging-1.1.jarlog4j-1.2.13.jarjunit-3.8.1.jarpoi-3.9-2012 ...

  6. 使用Phantom omni力反馈设备控制机器人

    传统的工业机器人普遍采用电机 .齿轮减速器 .关节轴三者直接连接的传动机构,这种机构要求电机与减速器安装在机械臂关节附近,其缺点是对于多关节机械臂,下一级关节的电机与减速器等驱动装置成为上一级关节的额 ...

  7. JUC-ReadWriteLock

    ReadWriteLock 维护了一对相关的锁,一个用于只读操作,另一个用于写入操作.只要没有 writer,读取锁可以由多个 reader 线程同时保持.写入锁是独占的. ReadWriteLock ...

  8. 编译安装imagick出错:make: *** [imagick_class.lo] Error 1

    /usr/local/lnmpsrc/imagick-3.0.1/imagick_class.c:9673: warning: assignment makes pointer from intege ...

  9. 转error while loading shared libraries的解決方法

    error while loading shared libraries的解決方法 者 icq 21:03 | 靜態連結網址 | 迴響 (0) | 引用 (1) | 點閱次數 (270) | Prog ...

  10. PHP 调用ffmpeg

    PHP 调用ffmpeg linux ffmpeg安装,tar文件安装一直出错,一直无语 php-ffmpeg安装, tar文件安装也一直出错,一直无语 最后直接在系统上安装ffmpeg sudo a ...