这个和 bzoj 5469 几乎是同一道题,但是这里给出另一种做法.

你发现你要求的是一个树上 LIS,而序列上的 LIS 有一个特别神奇的 $O(n\log n) $ 做法.

就是维护一个单调递增的栈,如果发现新加元素大于栈顶,则直接加入,否则在序列中二分出一个大于等于该元素的最小值,然后替换掉.

这个单调栈维护的并不是 LIS,而是 LIS 中每个长度的最小结尾数值.

这个拓展到树上同理,你发现儿子之间互不影响,所以可以直接合并.

然后,再用当前节点的值去替换一个大于等于这个值的最小值.

code:

#include <bits/stdc++.h>
#define N 200006
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,edges;
int hd[N],to[N<<1],nex[N<<1],id[N],A[N],val[N];
multiset<int>se[N];
multiset<int>::iterator it;
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void merge(int x,int y)
{
if(se[id[y]].size()>se[id[x]].size()) swap(id[x],id[y]);
for(it=se[id[y]].begin();it!=se[id[y]].end();it++) se[id[x]].insert(*it);
se[id[y]].clear();
}
void dfs(int u,int ff)
{
for(int i=hd[u];i;i=nex[i]) dfs(to[i],u), merge(u,to[i]);
it=se[id[u]].lower_bound(val[u]);
if(it!=se[id[u]].end()) se[id[u]].erase(it);
se[id[u]].insert(val[u]);
}
int main()
{
// setIO("input");
int i,j;
scanf("%d",&n);
for(i=1;i<=n;++i)
{
id[i]=i;
scanf("%d",&val[i]);
int ff;
scanf("%d",&ff);
if(ff) add(ff,i);
}
dfs(1,0);
printf("%d\n",se[id[1]].size());
return 0;
}

  

BZOJ 4919: [Lydsy1706月赛]大根堆 set启发式合并的更多相关文章

  1. bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 599  Solved: 260[Submit][Stat ...

  2. BZOJ.4919.[Lydsy1706月赛]大根堆(线段树合并/启发式合并)

    题目链接 考虑树退化为链的情况,就是求一个最长(严格)上升子序列. 对于树,不同子树间是互不影响的.仿照序列上的LIS,对每个点x维护一个状态集合,即合并其子节点后的集合,然后用val[x]替换掉第一 ...

  3. BZOJ 4919: [Lydsy1706月赛]大根堆 启发式合并

    我不会告诉你这是线段树合并的好题的... 好吧我们可以搞一个multiset在dfs时求出LIS(自带二分+排序)进行启发式合并,轻松加愉悦... #include<cstdio> #in ...

  4. BZOJ 4919 [Lydsy1706月赛]大根堆 (SRM08 T3)

    [题解] 求一个序列的LIS有一个二分做法是这样的:f[i]表示长度为i的上升序列中最后一个数最小可以是多少,每次二分大于等于当前数字x的f[j],把f[j]修改为x:如果找不到这样的f[j],那就把 ...

  5. BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  6. BZOJ 4919: [Lydsy1706月赛]大根堆

    F[x][i]表示x的子树中取的数字<=i的最大值,线段树合并优化DP 写得很难看,并不知道好看的写法 #include<cstdio> #include<algorithm& ...

  7. [Lydsy1706月赛]大根堆

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 358  Solved: 150[Submit][Stat ...

  8. 【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并

    [BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

  9. BZOJ4919 [Lydsy1706月赛]大根堆 【dp + 启发式合并】

    题目链接 BZOJ4919 题解 链上的\(LIS\)维护一个数组\(f[i]\)表示长度为\(i\)的\(LIS\)最小的结尾大小 我们可以用\(multiset\)来维护这个数组,子树互不影响,启 ...

随机推荐

  1. Python之路【第十八篇】:前端HTML

    一.前端概述 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind( ...

  2. Visual Studio 2019激活

    Visual Studio 2019 Enterprise BF8Y8-GN2QH-T84XB-QVY3B-RC4DF Visual Studio 2019 Professional NYWVH-HT ...

  3. cocos creator图片渲染问题!

    问题:游戏项目需要添加一个开场剧情(); 第一时间使用了cc.component.scheduleOnce (), 里面的回调函数为 cc.loader.loadRes(). 进入游戏时,渲染主场景后 ...

  4. 【题解】Luogu CF1172B Nauuo and Circle

    原题传送门 题意:在圆上有n个节点(珂以构成凸多边形),让你给节点编号,使得将题目给你的边(一棵树)没有交叉 我们钦定1为这个树的根节点.任意节点\(x\)的一颗子树的点应该是圆弧上连续的一段(我也不 ...

  5. Spark数据倾斜解决方案及shuffle原理

    数据倾斜调优与shuffle调优 数据倾斜发生时的现象 1)个别task的执行速度明显慢于绝大多数task(常见情况) 2)spark作业突然报OOM异常(少见情况) 数据倾斜发生的原理 在进行shu ...

  6. C#——零散学习

    C#——零散学习0 //控制台输入字符串,转化为int,double,float等数值类型: //Convert.ToXXX32();函数. Convert.ToInt32(); //把字符串转换为i ...

  7. 在ASP.NET MVC中加载部分视图的方法及差别

    在视图里有多种方法可以加载部分视图,包括Partial() .Action().RenderPartial().RenderAction().RenderPage()方法.下面说明一下这些方法的差别. ...

  8. windows nvlddmkm、DRIVER_POWER_STATE_FAILURE 蓝屏问题的解决资料

    背景与现象描述 博主在最近购买了 机械革命 Z2-R (MECHREVO Z2-R Series GK5CP02) 笔记本电脑后,几乎每天均有不下3次的蓝屏,而且机器热时,更甚,达到每天10次以上,简 ...

  9. 【故障处理】队列等待之TX - allocate ITL entry引起的死锁处理

    [故障处理]队列等待之TX - allocate ITL entry引起的死锁处理 1  BLOG文档结构图       2  前言部分 2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌 ...

  10. npm 更换阿里淘宝源

    执行命令 npm config set registry https://registry.npm.taobao.org/ 查看是否已经更换成功 npm config get registry