虚拟变量和独热编码的区别(Difference of Dummy Variable & One Hot Encoding)
在《定量变量和定性变量的转换(Transform of Quantitative & Qualitative Variables)》一文中,我们可以看到虚拟变量(Dummy Variable)与独热编码( One Hot Encoding)非常相似,其不同之处在于:在虚拟编码方案中,当特征具有 m 个不同类别标签时,我们将得到 m-1 个二进制特征,作为基准的特征被完全忽略;而在独热编码方案中,我们将得到 m 个二进制特征。
可以看到,独热编码( One Hot Encoding)比虚拟变量(Dummy Variable)多生成了一个变量,这对模型有什么影响呢?之前在《虚拟变量陷阱(Dummy Variable Trap)》一文中,我们阐述了使用独热编码会导致共线性问题,也就是自变量之间存在高度相关关系,从而使模型参数估计不准确。(另外,独热编码的截距表示均值,回归系数是与均值之间的差距;而虚拟变量的截距是参照类的值,回归系数表示与参照类的差距。)因此,如果线性模型有截距项,那么请使用虚拟变量;如果线性模型无截距项,那么使用独热编码。此外,如果线性模型有截距项,但在加了正则化之后,也可以使用独热编码,因为这相当于约束了 w 的解的空间。
(注:为了模型稳定性的缘故,线性模型通常都是要有截距项的。)
除此之外,虚拟变量(Dummy Variable)与独热编码( One Hot Encoding)之间还有什么区别呢?1,如果有N个特征,已知前N-1个特征的特征值之后,第N个特征的特征值也就知道了,因此独热编码有冗余,虚拟变量没有冗余;2,独热编码可以直接从激活状态看出所对应的类别,而虚拟变量需要进行推论,因此独热编码比较直观,虚拟变量没有那么直观。
总结:如果使用正则化,那么推荐使用独热编码,因为regularization能够处理多余的自由度,使用正则化手段去约束参数,同时类别型变量的各个值的地位是对等的。如果不使用正则化,那么使用虚拟变量(这样多余的自由度都被统摄到截距项intercept里去了)。
参考:https://www.cnblogs.com/lianyingteng/p/7792693.html
虚拟变量和独热编码的区别(Difference of Dummy Variable & One Hot Encoding)的更多相关文章
- OneHotEncoder独热编码和 LabelEncoder标签编码
学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到 ...
- 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码
一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...
- 数据预处理之独热编码(One-Hot Encoding)(转载)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 机器学习:数据预处理之独热编码(One-Hot)
前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...
- One-Hot独热编码
One-Hot独热编码 Dummy Encoding VS One-Hot Encoding二者都可以对Categorical Variable做处理,定性特征转换为定量特征,转换为定量特征其实就是将 ...
- 数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?
一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下: 在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: ...
- 【转】数据预处理之独热编码(One-Hot Encoding)
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...
- 机器学习实战:数据预处理之独热编码(One-Hot Encoding)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 独热编码OneHotEncoder简介
在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难.即使将类别与数字对应,例如{'A','B','C ...
随机推荐
- Gradle 翻译 build dependencies 依赖 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- C# vb .net实现移除像素特效滤镜
在.net中,如何简单快捷地实现Photoshop滤镜组中的移除像素特效呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...
- Mars Android 接入指南
Mars Android 接入指南 https://github.com/Tencent/mars/wiki/Mars-Android-%E6%8E%A5%E5%85%A5%E6%8C%87%E5%8 ...
- 使用Filezilla Server配置FTP服务器
一.下载Filezilla Server 官网网址:https://filezilla-project.org 二.安装Filezilla Server Filezilla Server的安 ...
- igel udc2 config
igel udc2 config 系统安装盘下载地址 http://www.myigel.biz/?forcedownload /config/bin/igelone_config #!/bin/sh ...
- python中configparser模块读取ini文件
python中configparser模块读取ini文件 ConfigParser模块在python中用来读取配置文件,配置文件的格式跟windows下的ini配置文件相似,可以包含一个或多个节(se ...
- 精选SpringBoot八大开源项目:支付、秒杀、全文搜索等
前言 曾在自己的博客中写下这样一段话:有一种力量无人能抵挡,它永不言败生来倔强.有一种理想照亮了迷茫,在那写满荣耀的地方. 如今,虽然没有大理想抱负,但是却有自己的小计划.下面是这一年来,自己利用闲暇 ...
- 为什么在定义hashcode时要使用31这个数呢?
散列计算就是计算元素应该放在数组的哪个元素里.准确的说是放到哪个链表里面.按照Java的规则,如果你要想将一个对象放入HashMap中,你的对象的类必须提供hashcode方法,返回一个整数值. ht ...
- js switch case 判断的是绝对相对===,值和类型都要相等
js switch case 判断的是绝对相对===,值和类型都要相等
- Apache Thrift安装介绍 (ubuntu)
apache thrift是一种常用的远程服务调用框架. 下面对apache thrift的安装进行介绍: 下面是thrift的源码安装: Debian/Ubuntu (14+) 编译运行依赖安装 $ ...