import tensorflow as tf

files = tf.train.match_filenames_once("data.tfrecords-*")
filename = tf.train.string_input_producer(files, shuffle=False, num_epochs=3) # 创建输入队列
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename) features = tf.parse_single_example( # 解析serialized_example
serialized_example,
features={
'i': tf.FixedLenFeature([], tf.int64),
'j': tf.FixedLenFeature([], tf.int64),
}
) example, label = features['i'], features['j']
batch_size = 3
capacity = 1000 + 3 * batch_size
# example_batch, label_batch = tf.train.batch([example, label], batch_size=batch_size, capacity=capacity)
# example_batch, label_batch = tf.train.shuffle_batch([example, label], batch_size=batch_size,
# capacity=capacity, min_after_dequeue=30)
example_batch, label_batch = tf.train.shuffle_batch([example, label], batch_size=batch_size,
capacity=capacity, min_after_dequeue=30, num_threads=2)
# capacity与队列有关,当队列容量小于capacity时,Tensorflow将重新启动入队操作,当长度等于容量时,暂停入队操作
# 以上这玩意tf.train.batch是会新创建一个队列的
with tf.Session() as sess:
tf.local_variables_initializer().run() # 处理files = tf.train.match_filenames_once("data.tfrecords-*")
print(sess.run(files))
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(4):
cur_example_batch, cur_label_batch = sess.run([example_batch, label_batch])
print(cur_example_batch, cur_label_batch) coord.request_stop()
coord.join(threads)

Tensorflow细节-P194-组合训练数据的更多相关文章

  1. TensorFlow多线程输入数据处理框架(三)——组合训练数据

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 通过TensorFlow提供的tf.train.batch和tf.train.shuffle_batch函数来将单 ...

  2. tensorflow读取训练数据方法

    1. 预加载数据 Preloaded data # coding: utf-8 import tensorflow as tf # 设计Graph x1 = tf.constant([2, 3, 4] ...

  3. Tensorflow细节-P170-图像数据预处理

    由于6.5中提出的TFRecord非常复杂,可扩展性差,所以本节换一种方式 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  4. Tensorflow 从文件中载入训练数据

    本节包含: 用纯文本文件准备训练数据 加载文件中的训练数据 一.用纯文本文件准备训练数据 1.数据的数字化 比如,“是” —— “1”,“否” —— “0” “优”,“中”,“差” —— 1 2 3  ...

  5. TensorFlow Distribution(分布式中的数据读取和训练)

    本文目的 在介绍estimator分布式的时候,官方文档由于版本更新导致与接口不一致.具体是:在estimator分布式当中,使用dataset作为数据输入,在1.12版本中,数据训练只是datase ...

  6. Tensorflow细节-P202-数据集的高层操作

    本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. tr ...

  7. 学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)

    视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自 ...

  8. [开发技巧]·TensorFlow中numpy与tensor数据相互转化

    [开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...

  9. tesnorflow实现N个epoch训练数据读取的办法

    https://blog.csdn.net/lujiandong1/article/details/53991373 方式一:不显示设置读取N个epoch的数据,而是使用循环,每次从训练的文件中随机读 ...

随机推荐

  1. vue 仿写微信公众号自定义菜单

    先看效果图 代码参考 <template> <div> <!-- 公众号设置 --> <el-col :span="24" style=& ...

  2. AS3放大镜工具类

    package { import flash.display.Bitmap; import flash.display.BitmapData; import flash.display.Display ...

  3. Linux 中ifconfig和ip addr命令看不到ip

    解决方案: 输入 vi /etc/sysconfig/network-scripts/ifcfg-ens33 将ONBOOT权限改为yes 保存退出,按Esc,输入:wq 重启网络服务,输入 sudo ...

  4. java并发编程之原子操作

    先来看一段简单的代码,稍微有点并发知识的都可以知道打印出结果必然是一个小于20000的值 package com.example.test.cas; import java.io.IOExceptio ...

  5. 【转载】Windows安装Redis并添加本地自启动服务

    概况 在windows本地搭建redis缓存,添加到本地计算机的服务中,保证每次开机自动启动服务. 第一步:下载redis(我的是计算机win10,64位) https://github.com/Mi ...

  6. CORS讲解

    跨域资源共享(CORS) 是一种机制,它使用额外的 HTTP 头来告诉浏览器  让运行在一个 origin (domain) 上的Web应用被准许访问来自不同源服务器上的指定的资源.当一个资源从与该资 ...

  7. Java中BIO和NIO

    同步/异步.阻塞/非阻塞概念 同步异步 同步和异步关注的是消息通信机制 (synchronous communication/ asynchronous communication) 同步:在发出一个 ...

  8. VBA 字符串-相关函数(1-5)

    Instr()函数 InStr()函数返回一个字符串第一次出现在一个字符串,从左到右搜索.返回搜索到的字符索引位置. 语法 InStr([start,]string1,string2[,compare ...

  9. 关于移动端图片浏览,previewimage的使用

    我相信在移动端项目中,大家都会遇到图片浏览的问题,像qq,微信,微博,淘宝,当你点击图片时,图片会放大全屏显示,双击图片时图片继续放大查看,双指左右滑动也可以放大,当你再次点击时图片,图片恢复原始大小 ...

  10. 原生JS-----一个剪刀石头布游戏

    html: <h1>这是一个剪刀石头布游戏</h1> <h2>请出拳吧!少年!</h2> <h3>您已经获胜了<span id=&qu ...