P2016 战略游戏——树形DP大水题
P2016 战略游戏
树形DP 入门题吧(现在怎么是蓝色标签搞不懂);
注意是看见每一条边而不是每一个点(因为这里错了好几次);
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int pre[maxn],last[maxn],other[maxn],l; void add(int x,int y)
{
l++;
pre[l]=last[x];
last[x]=l;
other[l]=y;
} int n;
int f[maxn][]; void dfs(int x,int fa)
{
f[x][]=;f[x][]=;
for(int p=last[x];p;p=pre[p])
{
int v=other[p];
if(v==fa) continue;
dfs(v,x);
f[x][]+=min(f[v][],f[v][]);
f[x][]+=f[v][];
}
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x,k,y;
scanf("%d%d",&x,&k);
x++;
for(int j=;j<=k;j++)
{
scanf("%d",&y);
y++;
add(x,y);
add(y,x);
}
}
dfs(,);
printf("%d",min(f[][],f[][]));
return ;
}
P2016 战略游戏——树形DP大水题的更多相关文章
- [洛谷P2016] 战略游戏 (树形dp)
战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...
- P2016 战略游戏 (树形DP)
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
- 洛谷P2016 战略游戏
P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...
- POJ 1155 TELE 背包型树形DP 经典题
由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...
- POJ 2342 树形DP入门题
有一个大学的庆典晚会,想邀请一些在大学任职的人来參加,每一个人有自己的搞笑值,可是如今遇到一个问题就是假设两个人之间有直接的上下级关系,那么他们中仅仅能有一个来參加,求请来一部分人之后,搞笑值的最大是 ...
- 51nod 1353 树 | 树形DP经典题!
51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...
- luogu P2016 战略游戏
嘟嘟嘟 树形dp水题啦. 刚开始以为和[SDOI2006]保安站岗这道题一样,然后交上去WA了. 仔细想想还是有区别的,一个是能看到相邻点,一个是能看到相邻边.对于第一个,可以(u, v)两个点都不放 ...
- (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520
题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...
随机推荐
- 阿里云OSS上传文件本地调试跨域问题解决
问题描述: 最近后台说为了提高上传效率,要前端直接上传文件到阿里云,而不经过后台.因为在阿里云服务器设置的允许源(region)为某个固定的域名下的源(例如*.cheche.com),直接在本地访问会 ...
- js两个变量互换值
js两个变量交换值 这个问题看似很基础,但是有很多的实现方式,你知道的有多少呢,网上也有很多的方法,下面就来总结一下 中间变量(临时变量) 临时变量其实很好理解,通过一个中间变量进行交换值 var s ...
- UCOSIII事件标志组
两种同步机制 "或"同步 "与"同步 使能 #define OS_CFG_FLAG_EN 1u /* Enable (1) or Disable (0) cod ...
- Http状态吗504问题复盘
原因分析:504错误一般与nginx.conf配置有关,主要参数有:fastcgi_connect_timeout.fastcgi_send_timeout.fastcgi_read_timeout. ...
- Python线性回归算法【解析解,sklearn机器学习库】
一.概述 参考博客:https://www.cnblogs.com/yszd/p/8529704.html 二.代码实现[解析解] import numpy as np import matplotl ...
- 【idea】scala&sbt+idea安装配置与测试
一.IDEA安装 下载Community版的IDEA,Ultimate是免费试用版(相当于用到后面要给钱的) ideaIC-2019.2.3.tar.gz 解压IDEA: tar -zxvf idea ...
- 微信小程序~App.js中登录
(1)初始化项目中App.js登录代码 // 登录 wx.login({ success: res => { // 发送 res.code 到后台换取 openId, sessionKey, u ...
- 简单理解和使用 C# 委托与事件
委托和事件 委托:委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If-Else(Switch)语句,同时使得程 ...
- 《CoderXiaoban》第九次团队作业:Beta冲刺与验收准备2
项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 实验十三 团队作业9:BETA冲刺与团队项目验收 团队名称 Coderxiaoban团队 作业学习目标 (1)掌握软件黑盒 ...
- test20190815 NOIP2019 模拟题
100+60+40=200,被后面两个题卡着我很不爽. 立方数 [问题描述] 作为 XX 战队的狂热粉丝,MdZzZZ 看到了自己心仪的队伍在半决赛落败,顿时 心灰意冷.看着自己手中的从黄牛那里抢来的 ...