树——倍增LCA
与正文无瓜的前言
身为一个高一才开始学的OIER,现在才开始恶补模板,感觉今年就要退役了。
不想刷题了滚过来写写博客<-------极端危险的思想。
引入
LCA(Lowest Common Ancestors),即最近公共祖先,听名字就知道这是与树上两个节点有关的东西。
它的定义就是两个点最近的公共祖先(废话),同时它也是树上一个节点到另一个节点的最短路中经过的深度最小的点。
如图,2就是8与9的最近公共祖先,7就是10和12的最近公共祖先。

那么LCA有什么用呢?
举个例子,我们可以利用LCA在O(1)的时间复杂度内求出树上两点u,v的最短距离。这里用dep表示节点的深度。
dis(u,v)=dep(u)+dep(v)-2*dep(LCA(u,v));
所以能快速求出LCA就可以快速求出两点间的距离。当然LCA还有其它作用,这里就不再赘述了(其实我并不知道)。
正文
我们来想一下一般的LCA求法。
对于任意两个节点u,v,如果我们一开始让它们同时向上寻找祖先,因为它们深度可能不同,其中深度较低的点就会向上走过头。
就像这样:

所以我们先让深度较深的点先向上走,走到与另一个点深度相同时,两个点再肩并肩向上走,找到第一个公共祖先为止。


而用倍增求LCA的方法也跟这个差不多,只不过不是一步一步向上走,而是先预处理出每个点向上走2^k步到达的节点,再向上飞。
设fa[i][j]为i节点向上走2^j步到达的节点,那么fa[i][j]可以这么转移:fa[i][j]=fa[ fa[i][j-1] ][j-1]转移过来。
这里介绍两种预处理的方式。
一种是一边遍历树一边处理,代码如下:
void dfs(int x,int f)
{
dep[x]=dep[fa[x][]=f]+;
for(int j=;j<=;j++)
fa[x][j]=fa[fa[x][j-]][j-];
for(int i=info[x];i;i=nex[i])if(v[i]!=f)dfs(v[i],x);
}
另一种是先遍历,然后处理,代码:
void dfs(int x,int f)
{
dep[x]=dep[fa[x][]=f]+;
for(int i=info[x];i;i=nex[i])if(v[i]!=f)dfs(v[i],x);
}
void pre()
{
dfs(,);
for(int j=;j<=LOG;j++)for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
}
预处理完后,我们就可以让深度较深的节点快速的与另一个节点会和,然后比翼双飞

直接给出代码和注解:
int lca(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
int delta=dep[x]-dep[y];
for(int i=LOG;i>=;i--)
if(delta&(<<i))x=fa[x][i];//将delta转化为二进制,再用2^i凑出来
if(x==y)return x;
for(int i=LOG;i>=;i--)//用2^i凑距离,对于每个2^i只有可能被用一次,从大到小就是为了防止多用。
if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];//如果相等就一起向上飞,会飞到公共祖先,但不是最近的
return fa[x][];
}
树——倍增LCA的更多相关文章
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- 洛谷P4180 [BJWC2010]次小生成树(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- 树上第k小,可持久化线段树+倍增lca
给定一颗树,树的每个结点都有权值, 有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少. 每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树 c[ro ...
- 【BZOJ3123】[Sdoi2013]森林 主席树+倍增LCA+启发式合并
[BZOJ3123][Sdoi2013]森林 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整 ...
- bzoj 3123 [Sdoi2013]森林(主席树,lca,启发式合并)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- Tsinsen A1505. 树(张闻涛) 倍增LCA,可持久化线段树,DFS序
题目:http://www.tsinsen.com/A1505 A1505. 树(张闻涛) 时间限制:1.0s 内存限制:512.0MB 总提交次数:196 AC次数:65 平均分: ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)
洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
随机推荐
- MQTT协议中的topic
1.MQTT协议中的topic 定阅与发布必须要有主题,只有当定阅了某个主题后,才能收到相应主题的payload,才能进行通信. 2. 主题层级分隔符--"/" 主题层级分隔符使得 ...
- flex 布局学习
flex 布局学习 寻根溯源话布局 一切都始于这样一个问题:怎样通过 CSS 简单而优雅的实现水平.垂直同时居中.记得刚开始学习 CSS 的时候,看到 float 属性不由得感觉眼前一亮,顺理成章的联 ...
- 接口认证:Bearer Token(Token 令牌)
因为HTTP协议是开放的,可以任人调用.所以,如果接口不希望被随意调用,就需要做访问权限的控制,认证是好的用户,才允许调用API. 目前主流的访问权限控制/认证模式有以下几种: 1)Bearer To ...
- Appscan漏洞之跨站点请求伪造(CSRF)
公司前段时间使用了Fortify扫描项目代码,在修复完这些Fortify漏洞后,最近又启用了Appscan对项目代码进行漏洞扫描,同样也是安排了本人对这些漏洞进行修复.现在,针对修复过的Appscan ...
- Android笔记(七十二) Style和Theme
我们尝尝需要使用setText.setColor.setTextSize等属性来设置控件的样式,但是每个控件都需要设置这些属性,工作量无疑是巨大的,并且后期维护起来也不方便. Style Androi ...
- 【CMDB】高级配置
思路: 一份默认配置,一份用户自定义配置,将两者结合,自定义优先级大于默认配置 目录结构 ''' 用户自定义的配置文件,settings.py ''' USER = 'xiaoming' PASSWO ...
- mybatis中对数据表操作的四种语法
查询数据(select) select...from...where... 如:查询学生表中学号为某数的学生的全部信息 select * from stu where id=#{id} 增加数据(in ...
- ICS2019-Linux汇编实验指导
ICS2019-Linux汇编实验指导 环境配好了? 开始调试 一. 首先安装NASM 1. 先判断系统是否已经安装了nasm 打开终端,执行 whereis nasm :如果显示nasm: /us ...
- Apache实验-目录别名
一.作用介绍 在一些情况下,我们的资源文件都在非/var/www/html目录下,例如/var/www/html/sohu.这样的话我们在输入网址的时候就需要在网站根目录下再输入完整的目录.所以我们可 ...
- 最新my.cnf可用于5.6&5.7
[MySQL]prompt = [\\u@\\h][\\d]>\\_ #自定义登录提示信息 [mysqld]#基本设置#user = mysql #用户名sql_mode =“STRICT_T ...