Luogu4827 Crash的文明世界 组合、树形DP
又是喜闻乐见的\(k\)次幂求和题目
那么\(S(x) = \sum\limits_{i=1}^n dist(i,x)^k = \sum\limits_{i=1}^n \sum\limits_{j=1}^k \binom{dist(i,x)}{j} \left\{ \begin{array}{cccc} k \\ j \end{array}\right\} j! = \sum\limits_{j=1}^k \left\{ \begin{array}{cccc} k \\ j \end{array}\right\} j! \sum\limits_{i=1}^n \binom{dist(i,x)}{j}\)。
因为组合数有优秀的性质:\(\binom{i+1}{j}=\binom{i}{j} + \binom{i}{j - 1}\),可以用这一个式子做一个DP。
设\(x\)和\(x\)的子树集合为\(S_x\),\(dp_{i,j}=\sum\limits_{x \in S_i}\binom{dist(i,x)}{j}\),转移的时候考虑\(i\)的孩子\(x\),\(dp_x\)中的所有\(dist\)都会加上\(1\),也就是说\(dp_{i,j} += \sum\limits_{y \in S_x} \binom{dist(x,y)+1}{j} = \sum\limits_{y \in S_x} (\binom{dist(x,y)}{j}+\binom{dist(x,y)}{j-1}) = dp_{x,j}+dp_{x,j-1}\),初始每一个节点\(i\)的\(dp_{i,0}=1\),其余为\(0\)。
接下来设\(up_{i,j} = \sum\limits_{x \not\in S_i}\binom{dist(i,x)}{j}\),转移从一个点\(i\)转移到它的孩子\(x\),将\(dp_x\)对\(dp_i\)的贡献消除之后得到\(dp'_i\),那么不难得到\(up_{x,j} = up_{i,j}+up_{i,j-1}+dp'_{i,j}+dp'_{i,j-1}\)。
最后\(\sum\limits_{i=1}^n \binom{dist(i,x)}{j} = dp_{x,j} + up_{x,j}\)。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
int read(){
int a = 0; char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
const int _ = 50003 , MOD = 10007;
struct Edge{
int end , upEd;
}Ed[_ << 1];
int dp[_][157] , up[_][157] , tmp[157] , S[157][157] , ans[_];
int N , K , head[_] , cntEd;
void addEd(int a , int b){
Ed[++cntEd] = (Edge){b , head[a]};
head[a] = cntEd;
}
void dfs1(int x , int p){//dp
dp[x][0] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
dfs1(Ed[i].end , x);
for(int j = K ; j ; --j)
dp[x][j] = (dp[x][j] + dp[Ed[i].end][j] + dp[Ed[i].end][j - 1]) % MOD;
dp[x][0] = (dp[x][0] + dp[Ed[i].end][0]) % MOD;
}
}
void dfs2(int x , int p){//up
for(int i = 0 ; i <= K ; ++i)
tmp[i] = (up[x][i] + dp[x][i]) % MOD;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
up[Ed[i].end][0] = (tmp[0] + MOD - dp[Ed[i].end][0]) % MOD;
for(int j = 1 ; j <= K ; ++j)
up[Ed[i].end][j] = (tmp[j] + 2 * MOD - (dp[Ed[i].end][j] + dp[Ed[i].end][j - 1])) % MOD;
for(int j = K ; j ; --j)
up[Ed[i].end][j] = (up[Ed[i].end][j] + up[Ed[i].end][j - 1]) % MOD;
}
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p)
dfs2(Ed[i].end , x);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read(); K = read();
for(int i = 1 ; i < N ; ++i){
int a = read() , b = read();
addEd(a , b); addEd(b , a);
}
S[1][1] = 1;
for(int i = 2 ; i <= K ; ++i)
for(int j = 1 ; j <= i ; ++j)
S[i][j] = (S[i - 1][j - 1] + S[i - 1][j] * j) % MOD;
dfs1(1 , 0); dfs2(1 , 0);
int fac = 1;
for(int j = 1 ; j <= K ; ++j){
fac = 1ll * fac * j % MOD;
for(int i = 1 ; i <= N ; ++i)
ans[i] = (ans[i] + 1ll * (dp[i][j] + up[i][j]) * fac * S[K][j]) % MOD;
}
for(int i = 1 ; i <= N ; ++i)
printf("%d\n" , ans[i]);
return 0;
}
Luogu4827 Crash的文明世界 组合、树形DP的更多相关文章
- BZOJ2159 Crash的文明世界(树形dp+斯特林数)
根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...
- BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...
- 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)
传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...
- 【BZOJ2159】Crash的文明世界
[2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
- P4827「国家集训队」 Crash 的文明世界
「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...
- BZOJ.2159.Crash的文明世界(斯特林数 树形DP)
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...
- [BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...
随机推荐
- Bzoj 1927: [Sdoi2010]星际竞速(网络流)
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...
- Cocos Creator开发hello World
若本号内容有做得不到位的地方(比如:涉及版权或其他问题),请及时联系我们进行整改即可,会在第一时间进行处理. 请点赞!因为你们的赞同/鼓励是我写作的最大动力! 欢迎关注达叔小生的简书! 这是一个有质量 ...
- 前端微信小程序生鲜类仿爱鲜蜂微信小程序
需求描述及交互分析设计思路和相关知识点首页界面布局设计闪送超市纵向导航设计商品添加到购物车设计购物车商品显示设计收货地址列表显示设计新增收货地址设计 交互分析(1)底部标签导航有首页.闪送超市.购物车 ...
- dropbox icloud and nustore
dropbox icloud and nustore 这里只是写一下自己的感受. 曾经搜索无数遍, 想着用哪个比较好, 想来比较一下, 还不如自己直接用用看吧. 于是同时用了很久的 dropbx 和 ...
- 最近在弄ionic3的时候遇到的一些问题(遇到就更新)
问题一(install提示errno -4048 和管理员权限) npm install npm ERR! code EPERM npm ERR! errno - npm ERR! syscall u ...
- eclipse为项目设置jdk
1)在项目上右键选中properties,会进入如下界面 (2)然后点击Add Library,进入设置Library的界面 (3)选中JRE System Library进入下一界面就可以设置jdk ...
- clion ctrl+鼠标左键不能调到函数实现
问题:ctrl+鼠标左键只能在函数定义和申明之间跳转,不能跳转到implement,如果按ctrl+shift+B会报“no implement”. 解决:更改CMakeList文件,更改版本号. c ...
- ICEM-tube-water
原视频下载地址:https://pan.baidu.com/s/1slPfJFv 密码: kjsh
- 腾讯云手动搭建nginx+php-fpm并自启动
自己一点小爱好,搭建了一个小网站植物大战僵尸百科, 使用的是腾讯云,市场里的镜像不好用,所以自己手动搭建一波. centos 7 编译安装 php-7.2.11的步骤 在官网下载php-7.2.11的 ...
- pm升级到最新版本、指定版本
npm 升级到最新版本 //linux下 npm install -g npm npm升级到指定版本 //比如升级到5.6.0 npm install -g npm@5.6.0