Tarjan 算法 自学整理
算法介绍
如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
Tarjan算法是用来求有向图的强连通分量的。求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法。
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],
找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,
节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。
返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
版权声明:资料来自360百科
Tarjan 算法 自学整理的更多相关文章
- Tarjan算法整理
众所周知,tarjan是个非常nb的人,他发明了很多nb的算法,tarjan算法就是其中一个,它常用于求解强连通分量,割点和桥等.虽然具体实现的细节不太一样,但是大体思路是差不多的.先来说一下大体思路 ...
- 求图的强连通分量--tarjan算法
一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...
- 割点(Tarjan算法)【转载】
本文转自:www.cnblogs.com/collectionne/p/6847240.html 供大家学习 前言:之前翻译过一篇英文的关于割点的文章(英文原文.翻译),但是自己还有一些不明白的地方, ...
- Tarjan算法及其应用
Tarjan算法及其应用 引入 tarjan算法可以在图上求解LCA,强连通分量,双联通分量(点双,边双),割点,割边,等各种问题. 这里简单整理一下tarjan算法的几个应用. LCA http:/ ...
- 割点(Tarjan算法)
本文可转载,转载请注明出处:www.cnblogs.com/collectionne/p/6847240.html .本文未完,如果不在博客园(cnblogs)发现此文章,请访问以上链接查看最新文章. ...
- Tarjan算法分解强连通分量(附详细参考文章)
Tarjan算法分解强连通分量 算法思路: 算法通过dfs遍历整个连通分量,并在遍历过程中给每个点打上两个记号:一个是时间戳,即首次访问到节点i的时刻,另一个是节点u的某一个祖先被访问的最早时刻. 时 ...
- 20行代码实现,使用Tarjan算法求解强连通分量
今天是算法数据结构专题的第36篇文章,我们一起来继续聊聊强连通分量分解的算法. 在上一篇文章当中我们分享了强连通分量分解的一个经典算法Kosaraju算法,它的核心原理是通过将图翻转,以及两次递归来实 ...
- 算法学习笔记:Tarjan算法
在上一篇文章当中我们分享了强连通分量分解的一个经典算法Kosaraju算法,它的核心原理是通过将图翻转,以及两次递归来实现.今天介绍的算法名叫Tarjan,同样是一个很奇怪的名字,奇怪就对了,这也是以 ...
- 浅谈 Tarjan 算法之强连通分量(危
引子 果然老师们都只看标签拉题... 2020.8.19新初二的题集中出现了一道题目(现已除名),叫做Running In The Sky. OJ上叫绮丽的天空 发现需要处理环,然后通过一些神奇的渠道 ...
随机推荐
- activeandroid复制本地数据库问题总结
activeandroid no such table 解决activeandroid no such table failed to read row 0 column 1 from a curso ...
- (转)SpringMVC学习(二)——SpringMVC架构及组件
http://blog.csdn.net/yerenyuan_pku/article/details/72231385 相信大家通过前文的学习,已经对SpringMVC这个框架多少有些理解了.还记得上 ...
- 爆零系列—补题A
http://codeforces.com/contest/615/problem/A 读错题 结果发现是无脑题 直接标记统计 #include<cstdio> #include< ...
- Heacher互助平台 α版本冲刺
课程属性 作业课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1/ 作业链接 https://edu.cnblogs.co ...
- python_113_socket编程
Socket语法及相关 socket概念 socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递. 我们知道网络 通信 都 是基于 ip+port 方能 ...
- 多数据源连接Oracle报错,linux熵池耗尽问题
最近碰到了个很有意思的问题,springboot加载多数据源,遇到了在启动时数据库连接报错的问题. 报错信息: The error occurred while executing a query 然 ...
- sscanf的使用
sscanf的使用 语法 int ssanf(const char *buffer, const char *format,[argument]...); 参数 buffer 存储的数据 format ...
- UVa-232-纵横字谜的答案
这一题的话,输出的时候,我们要按照3位输出,不能按照两位,因为是10*10的网格,所以就是100位,不管有没有100的起始格,它都是按照3位进行输出的,从题上的输出可以看到,不然的话,就会PE. 然后 ...
- 【动态规划】poj2353Ministry
拓扑序……好些玄妙 Description Mr. F. wants to get a document be signed by a minister. A minister signs a doc ...
- MySQL 上移/下移/置顶
在编写网站系统时,难免会用到上移.下移.置顶的功能,今天小编就介绍一下我的思路. 首先,需要一张数据表: CREATE TABLE `a` ( `id` ) NOT NULL AUTO_INCREME ...