概率DP+高斯消元

与博物馆一题不同的是,最终的状态是有一定的概率到达的,但是由于不能从最终状态中出来,所以最后要把最终状态的概率置为0。

一条边$(x,y)$经过的概率是x点的概率$*x$到$y$的概率+$y$的概率$*y$到$x$的概率。

然后直接高斯消元即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 500005 double a[505][505],p[500005];
int h[maxn],fr[maxn],to[maxn],ne[maxn],en=0,n,m,du[maxn]; void add(int a,int b)
{to[en]=b;fr[en]=a;ne[en]=h[a];h[a]=en++;} void solve(int x)
{
a[x][x]=1; if (x==n) return;
for (int i=h[x];i>=0;i=ne[i])
{
if (to[i]==n) continue;
a[x][to[i]]-=1.0/du[to[i]];
}
} void gauss()
{
F(i,1,n)
{
int tmp=i;
while (!a[tmp][i]&&tmp<=n) tmp++;
if (tmp>n) continue;
F(j,i,n+1) swap(a[i][j],a[tmp][j]);
F(j,1,n) if (j!=i)
{
double t=a[j][i]/a[i][i];
F(k,1,n+1) a[j][k]-=t*a[i][k];
}
}
} int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
F(i,1,m)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);add(b,a);
du[a]++;du[b]++;
}
F(i,1,n) solve(i);
a[1][n+1]=1;
gauss();
F(i,1,n) a[i][i]=a[i][n+1]/a[i][i];
int tot=0;
for (int i=0;i<en;i+=2)
p[++tot]=a[fr[i]][fr[i]]/(du[fr[i]]*1.0)+a[to[i]][to[i]]/(du[to[i]]*1.0);
sort(p+1,p+tot+1);
double ans=0;
F(i,1,tot) ans+=p[i]*(m-i+1);
printf("%.3f\n",ans);
}

  

  

BZOJ 3143 [Hnoi2013]游走 ——概率DP的更多相关文章

  1. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  2. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  3. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  4. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  5. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  6. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  7. bzoj 3143: [Hnoi2013]游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  8. bzoj 3143 [Hnoi2013]游走【高斯消元+dp】

    参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...

  9. bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...

随机推荐

  1. IOS自动化测试之UIAutomation

    通过Xcode工具编写运行测试脚本 1.当你有了一个应用的源代码之后,在Xcode工具中,首先选中被测应用,然后点击菜单栏中的“Product-Profile”,则会弹出Instruments工具,在 ...

  2. Win10系统64位快速专业安装版 V2016年

    win10系统64位快速专业安装版 V2016年2月 系统下载:http://www.xitongma.com/ Ghost Win10 64位正式装机专业版2016 微软向Windows用户推送了w ...

  3. 插值(scipy.interpolate)

    https://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate https://stackov ...

  4. 万事先问『为什么』 what why how

    万事先问『为什么』! 遇到问题时,很多人的行为模式顺序是,先问『做什么』,『怎么做』,他们从来不问『为什么』,他们对根源性问题很模糊. 而聪明人则是先问『为什么』,再去构建『怎么做』,而『做什么』就是 ...

  5. POJ1077 八数码 BFS

    BFS 几天的超时... A*算法不会,哪天再看去了. /* 倒搜超时, 改成顺序搜超时 然后把记录路径改成只记录当前点的操作,把上次的位置记录下AC..不完整的人生啊 */ #include < ...

  6. Django 模型ORM

    from django.db import models # Create your models here. class Book(models.Model): nid = models.AutoF ...

  7. python基础一 day10(1)

    要背的:

  8. Java获取2个日期里面的所有月份

    public static void main(String[] args) { String t1="2018-08-01"; t1 = t1.replaceAll(" ...

  9. Ueditor1.4.3上传视频IE下无法播放的问题

    一:百度编辑器插入视频后,自动生成一段代码: <video class="edui-upload-video vjs-default-skin video-js" contr ...

  10. java在线聊天项目0.9版 实现把服务端接收到的信息返回给每一个客户端窗口中显示功能之客户端接收

    客户端要不断接收服务端发来的信息 与服务端不断接收客户端发来信息相同,使用线程的方法,在线程中循环接收 客户端修改后代码如下: package com.swift; import java.awt.B ...