题目

给出一个NN的矩阵B和一个1N的矩阵C。求出一个1*N的01矩阵A.使得

D=(AB-C)AT最大。其中AT为A的转置。输出D

输入格式

第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.

接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。

输出格式

输出最大的D

输入样例

3

1 2 1

3 1 0

1 2 3

2 3 7

输出样例

2

提示

1<=N<=500

题解

我们将式子化简,就是:

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} Bij * Ai * Aj - \sum_{i}^{n} Ci * Ai\)

相当于,有n个物品,选择每个物品都有代价,任意两个物品同时选择时都有价值,求最大价值

用最小割解决

对于任意两个点i和j,建一个新点u,两点向u连边INF,u向T连边,容量为两个物品选择的权值

S向所有点连边,容量为该物品价值

我们假设一开始拥有所有价值

这样一来,要割去,每个点要么要花费其代价S->u,要么花费其与其它物品的共同代价u->T

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 300005,maxm = 5000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2,n,m;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
int d[maxn],vis[maxn],S,T,cur[maxn];
bool bfs(){
for (int i = S; i <= T; i++) vis[i] = 0,d[i] = INF;
queue<int> q;
q.push(S); vis[S] = true; d[S] = 0;
int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
memset(cur,-1,sizeof(cur));
flow += dfs(S,INF);
}
return flow;
}
int main(){
n = read(); S = 0; T = n + n * n + 1;
int x,ans = 0,id = n;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= n; j++){
ans += (x = read()); id++;
build(i,id,INF);
build(j,id,INF);
build(id,T,x);
}
}
for (int i = 1; i <= n; i++) build(S,i,read());
printf("%d\n",ans - maxflow());
return 0;
}

BZOJ3996 [TJOI2015]线性代数 【最小割】的更多相关文章

  1. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  2. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  3. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  4. [TJOI2015]线性代数(最小割)

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...

  5. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  6. BZOJ3996 [TJOI2015]线性代数

    就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...

  7. BZOJ3996 TJOI2015线性代数

    先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...

  8. BZOJ 3996 线性代数 最小割

    题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...

  9. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

随机推荐

  1. 关闭windows7/8的自动升级到windows10

    办公室的电脑已经有好几台自动升级到windows10了. 由于用着很不习惯都要求改回windows7. 升级了就不支持退回去,只能是全部删除重新安装了,很是麻烦.但是也没有看到哪里有可以关闭自动升级的 ...

  2. HDU 1520 Anniversary party (树形DP,入门)

    题意:给一棵树,每个节点都有权值,要求选择部分节点出来,使得权值之和最大,但是每对(父亲,儿子)中最多只能挑一个. 思路: 比较入门的题,每个节点可以选也可以不选.若当前节点选的话,孩子必须全部不选: ...

  3. python一周速成学习笔记

    目录 一:语法元素 1.注释,变量,空格的使用 2.输入函数,输出函数 3.分支语句,循环语句 4.保留字in,同步赋值 5.import与def以及turtle库 6.eval函数与repr函数 二 ...

  4. 如何在ABAP里用函数式编程思想打印出非波拉契Fibonacci(数列)

    在JavaScript里可以用ES6提供的FunctionGenerator这种黑科技来打印非波拉契数列,具体细节参考我这篇文章. 在ABAP里也有很多种方式实现这个需求. 下面这个report分别用 ...

  5. ArcMap所有Command GUID

    The information in this topic is useful if you're trying to programmatically find a built-in command ...

  6. Ubuntu12.04安装Chrome浏览器,并添加到左侧的启动栏

    在google官网下载google chrome deb包,有32位和64位之分: 怎么判断系统是32位还是64位的,可以用以下代码: ; int *p = &a; printf(" ...

  7. bootstrap历练实例: 基本胶囊式的导航菜单

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  8. ios之UISplitViewController

    iPad的屏幕比iPhone大,所以在界面上,iPad比iPhone多一个UISplitViewController,用来实现iPad在横屏时,分两栏显示所需要的界面,可以一边是目录一边是具体的内容. ...

  9. linux配置nodeJs环境教程

    来自阿里云:https://help.aliyun.com/document_detail/50775.html

  10. luogu P2574 XOR的艺术 (线段树)

    luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...