BZOJ3996 [TJOI2015]线性代数 【最小割】
题目
给出一个NN的矩阵B和一个1N的矩阵C。求出一个1*N的01矩阵A.使得
D=(AB-C)AT最大。其中AT为A的转置。输出D
输入格式
第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.
接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。
输出格式
输出最大的D
输入样例
3
1 2 1
3 1 0
1 2 3
2 3 7
输出样例
2
提示
1<=N<=500
题解
我们将式子化简,就是:
\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} Bij * Ai * Aj - \sum_{i}^{n} Ci * Ai\)
相当于,有n个物品,选择每个物品都有代价,任意两个物品同时选择时都有价值,求最大价值
用最小割解决
对于任意两个点i和j,建一个新点u,两点向u连边INF,u向T连边,容量为两个物品选择的权值
S向所有点连边,容量为该物品价值
我们假设一开始拥有所有价值
这样一来,要割去,每个点要么要花费其代价S->u,要么花费其与其它物品的共同代价u->T
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 300005,maxm = 5000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2,n,m;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
int d[maxn],vis[maxn],S,T,cur[maxn];
bool bfs(){
for (int i = S; i <= T; i++) vis[i] = 0,d[i] = INF;
queue<int> q;
q.push(S); vis[S] = true; d[S] = 0;
int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
memset(cur,-1,sizeof(cur));
flow += dfs(S,INF);
}
return flow;
}
int main(){
n = read(); S = 0; T = n + n * n + 1;
int x,ans = 0,id = n;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= n; j++){
ans += (x = read()); id++;
build(i,id,INF);
build(j,id,INF);
build(id,T,x);
}
}
for (int i = 1; i <= n; i++) build(S,i,read());
printf("%d\n",ans - maxflow());
return 0;
}
BZOJ3996 [TJOI2015]线性代数 【最小割】的更多相关文章
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- [TJOI2015]线性代数(最小割)
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- BZOJ3996 [TJOI2015]线性代数
就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...
- BZOJ3996 TJOI2015线性代数
先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
随机推荐
- c++的const和static区别
const定义的常量在超出其作用域之后其空间会被释放,而static定义的静态常量在函数执行后不会释放其存储空间. static表示的是静态的.类的静态成员函数.静态成员变量是和类相关的,而不是和类的 ...
- C# 一维数组 二位数组 多维数组
什么是数组? 数组是一组变量,就是把一些变量串在一起,放在一块. 数组的作用? 假设有一堆变量,每个变量都有一些程序,那么这堆程序放在一起 程序就会混乱,处理起来有些麻烦,那么数组就是把这些变量放在 ...
- CSS的相对定位和绝对定位
relative的意思就是相对自己的一开始的位置进行的定位.如图: 但是这个元素的本身边距不变,还在原来位置 absolute的意思就是 如果它的父元素设置了除static之外的定位,比如pos ...
- 【工具篇】在.Net中实现HTML生成图片或PDF的几种方式
前段时间由于项目上的需求,要在.Net平台下实现把HTML内容生成图片或PDF文件的功能,特意在网上研究了几种方案,这里记录一下以备日后再次使用.当时想着找一种开发部署都比较清爽并且运行稳定的方案,但 ...
- Vue相关问题
1. 说一下Vue的双向绑定数据的原理 vue 实现数据双向绑定主要是:采用数据劫持结合发布者-订阅者模式的方式,通过 Object.defineProperty() 来劫持各个属性的 setter, ...
- java面试基础篇(三)
1.Q:ArrayList 和 LinkedList 有什么区别? A:ArrayList查询快!LinkedList增删快.ArrayList是基于索引的数据接口,它的底层是数组.空间占用相对小一些 ...
- Bootstrap 网格系统(Grid System)
Bootstrap 网格系统(Grid System) Bootstrap提供了一套响应式,移动设备优先的流式网格系统,随着屏幕或视口(viewport)尺寸的增加,系统会自动分为最多12列. 什么是 ...
- Bootstrap 网页乱码
问题:今天早上在实践bootstrap的时候,用EditPlus写代码,标签中包含了中文.在浏览器解析的时候中文部分生成的乱码.但是网页部分已经声明了使用utf-8的编码方式. 解决:网页字体正常显示 ...
- Java多线程大合集
1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成 ...
- BZOJ4513 SDOI2016 储能表 记忆化搜索(动态规划)
题意: 题面中文,不予翻译:SDOI2016储能表 分析: 据说有大爷用一些奇怪的方法切掉了这道题%%%%% 这里用的是大众方法——动态规划. 其实这是一道类似于二进制数位dp的动态规划题,(但是实际 ...