题目描述

五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序。

已知整个地下超市的所有通道呈一棵树的形状;某些通道之间可以互相望见。总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同。

一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排保安。

编程任务:

请你帮助超市经理策划安排,在能看守全部通道端点的前提下,使得花费的经费最少。

输入输出格式

输入格式:

第1行 n,表示树中结点的数目。

第2行至第n+1行,每行描述每个通道端点的信息,依次为:该结点标号i(0<i<=n),在该结点安置保安所需的经费k(<=10000),该边的儿子数m,接下来m个数,分别是这个节点的m个儿子的标号r1,r2,...,rm。

对于一个n(0 < n <= 1500)个结点的树,结点标号在1到n之间,且标号不重复。

输出格式:

最少的经费。

如右图的输入数据示例

输出数据示例:

输入输出样例

输入样例#1:

6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
输出样例#1:

25

说明

样例说明:在结点2,3,4安置3个保安能看守所有的6个结点,需要的经费最小:25

Sol

背景和战略游戏是一样的,但是战略游戏求的是树上的最小点覆盖,可以用树形dp,也可以用二分图的一个定理。也就是说放置士兵的个数。

但本题求的是最小权值,而且稍有不同的是,本题望的是点,战略游戏望边。

但是不管怎么样,它还是在树上啊!树形dp能搞过。

我们冷静分析可知:一个节点有三种情况

0:当前没有被看,将来会被父节点看

( 由于树形dp是从下往上传递信息的 )

1:当前被看,且此处有保安

2:当前被看,但 是因为儿子处有保安。

则状态显然: f[x][0/1/2] 表示以x为根的子树的不同情况下所需的最小权值。

对于情况0,f [x] [0] + =sigma -> min( f[y][2],f[y][1] )  只要儿子节点被看就好。

对于情况1,f [x] [1] +=sigma  -> min ( f[y][2],f[y][1],f[y][0] ) +val[x]

对于情况2,f [x] [2] +=sigma  -> min ( f[y][2],f[y][1] ) 但当前节点是被看的,则必须满足有一个儿子的f[y][1]小于f[y][2],但当没有这个条件满足时,也需要一个f[y][1],我们可以求出所有儿子的这两个值之差的最小值,取一个f[y][1]。

最后结果即为 max ( f[root][1],f[root][2] )

注:这道题默认1是根节点,但题面(貌似)没有给出明确的暗示,所有最好还是养成找根节点的习惯。

code

 #include<cstdio>
#include<algorithm>
#include<cmath> using namespace std;
typedef long long ll; int n,tot;
int head[],f[][]; struct node{
int to,next;
}edge[]; void add(int x,int y)
{
edge[++tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
} void TreeDP(int x,int fa)
{
int cha=0x7f7f7f7f,cnt=;
for(int i=head[x];i;i=edge[i].next)
{
int y=edge[i].to;
if(y==fa) continue;
TreeDP(y,x);
f[x][]+=min(f[y][],f[y][]);
f[x][]+=min(min(f[y][],f[y][]),f[y][]);
/*if(f[y][1]<f[y][2]) f[x][2]+=f[y][1],flag=true;
else
{
if(flag) f[x][2]+=f[y][2];
else
if(fabs(f[y][1]-f[y][2])<min_cha)
min_cha=fabs(f[y][1]-f[y][2]),jian=f[y][2],jia=f[y][1],f[x][2]+=f[y][2];
else f[x][2]+=f[y][2];
}
}
if(!flag) f[x][2]=f[x][2]-jian+jia;*///我写的初始版本,但是太丑了QAQ
if(f[y][]<f[y][]) cnt++;
else cha=min(cha,f[y][]-f[y][]);
f[x][]+=min(f[y][],f[y][]);
}
if(cnt==) f[x][]+=cha;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int p,k,u,m;
scanf("%d%d%d",&p,&k,&m);
f[p][]=k;//注意这句!我被坑了好久!不是f[i][1]=k!
for(int i=;i<=m;i++)
{
scanf("%d",&u);
add(p,u);//由于没有暗示本题有明确的父子关系,所以还是连双向边的好
add(u,p);
}
}
TreeDP(,);//dfs传两个参数,一个是当前节点,一个是当前节点的父节点,是个好习惯,可以在后来的判断中防止死循环以及奇怪的MLE!
printf("%d",min(f[][],f[][]));
return ;
}

小结:本题是进阶的树形dp,只要把情况仔细梳理认真分类讨论就ok了!

Luogu P2458 [SDOI2006]保安站岗【树形Dp】的更多相关文章

  1. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  2. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  3. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

  4. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  5. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. 洛谷 P2458 [SDOI2006]保安站岗

    题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...

  7. [SDOI2006] 保安站岗

    题目链接 第一遍不知道为什么就爆零了…… 第二遍改了一下策略,思路没变,结果不知道为什么就 A 了??? 树形 DP 经典问题:选择最少点以覆盖树上所有点(边). 对于本题,设 dp[i][0/1][ ...

  8. 【Luogu】P3174毛毛虫(树形DP)

    题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...

  9. Luogu P1273 有限电视网【树形Dp/树形背包】

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

随机推荐

  1. nexus3.1私服搭建

    原文:http://blog.csdn.net/qqqqq210/article/details/52993337 1.简介 近期公司需要搭建jenkins自动化构建部署,需要搭建nexus私服环境, ...

  2. MySQL入门笔记 - 数据类型

    参考书籍<MySQL入门很简单> 数据类型是数据的一种属性,可以决定数据的存储方式.有效范围和相应的限制. 1.整数类型   1.1 MySQL的整数类型 MySQL中int类型和inte ...

  3. Web容器自己主动对HTTP请求中參数进行URLDecode处理

    这篇文章转载自 : Web容器自己主动对HTTP请求中參数进行URLDecode处理 如题.在Java中或许非常多人都没有注意到当我们发送一个http请求时,假设附带的參数被URLEncode之后,到 ...

  4. [Javascript] Use JavaScript's for-in Loop on Objects with Prototypes

    Loops can behave differently when objects have chained prototype objects. Let's see the difference w ...

  5. 【转】TestNG中的并发(多线程)

    优势 并行(多线程)技术在软件术语里被定义为软件.操作系统或者程序可以并行地执行另外一段程序中多个部分或者子组件的能力 多线程方式拥有很大的优势: 1). 减少测试运行时间 如果测试集里包含了大量的用 ...

  6. Hibernate4之session核心方法

    在学习session的核心方法之前,我们先了解下hibernate中几种对象的状态: 暂时状态:这样的状态就好像咱们公司请的暂时员工一样,他在公司里没有相关的资料和id. 特点:在使用代理主键的情况下 ...

  7. Codeforces 104C Cthulhu dfs暴力 || 点双连通缩点

    题目链接:点击打开链接 题意: 给定n个点m条边的无向图 问图中是否存在 有且仅有一个简单环和一些树,且这些树的root都在这个简单环上. 瞎写了个点双. . == #include <stdi ...

  8. udhcp详解源码(序)

    最近负责接入模块,包括dhcp.ipoe和pppoe等等.所以需要对dhcp和ppp这几个app的源代码进行一些分析.网上有比较好的文章,参考并补充自己的分析. 这篇udhcp详解是基于busybox ...

  9. 开发Nodejs(rest框架)版本的百度新闻系统--开发环境配置

    项目介绍:配置好开发环境,制作前端百度新闻界面,后台开发成Nodejs版本,做成做成rest风格API形式搭载mysql,使用Bootstrap搭建后台页面,完成对新闻的增删改查功能,利用Ajax配合 ...

  10. linux-shell脚本命令之awk

    [ awk简单介绍: ] awk能够从一个文本中获取部分内容, 或者对这个文本进行排版, 使它按某种格式输出. [ awk工作流程: ] awk会把文件一行内容去到内存里, 然后对这行内容进行分段 ( ...