【BZOJ 3884】 上帝与集合的正确用法
【题目链接】
【算法】
通过欧拉拓展定理,列出递推公式
【代码】
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll T,N;
map<ll,ll> M; template <typename T> inline void read(T &x) {
ll f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
} ll power(ll a,ll n,ll P) {
ll res;
if (n == ) return ;
if (n == ) return a % P;
res = power(a,n>>,P);
res = res * res % P;
if (n & ) res = res * a % P;
return res;
} ll phi(ll x) {
ll i,ret=x;
for (i = ; i <= sqrt(x); i++) {
if (x % i == ) {
while (x % i == ) x /= i;
ret = ret / i * (i - );
}
}
if (x > ) ret = ret / x * (x - );
return ret;
} inline ll calc(ll n) {
if (M.count(n)) return M[n];
return M[n] = power(,calc(phi(n))+phi(n),n);
} int main() { M[] = ;
read(T);
while (T--) {
read(N);
writeln(calc(N));
} return ;
}
【BZOJ 3884】 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- 解题:BZOJ 3884 上帝与集合的正确用法
题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ 3884 上帝与集合的正确用法题解
一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...
随机推荐
- NFV产品如何才能走向规模商用
作者简介:王晔,烽火通信科技股份有限公司ICT网络产品线NFV产品总监,高级工程师,研究方向为SDN\NFV\MEC\AI\光通信. 自2013年AT&T率先提出DOMAIN 2.0网络转型计 ...
- 初涉Git/Github
初涉Git/Github 第一部分:我的本次作业成果 我自己个人的github地址是:STRSong 我们开发团队小组的github地址是:三组 第二部分:给同学推荐github资源 推荐1 这个推荐 ...
- Spark学习(一) Spark初识
一.官网介绍 1.什么是Spark 官网地址:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 从右侧最后一条新闻看,Spark也用于A ...
- 模板题 Problem I Link Cut Tree
@(XSY)[LCT] Description 你们这么轻松A了前两题,要是AK了我可就惨了,所以这道题一定要是难(shui)题.那出什么难题呢?有了,这样吧,第一题是数,第二题是树,那我就出个同时含 ...
- Ubuntu 16.04下更新Atom
在Ubuntu下Atom好像不会自动更新,但是可以通过这些方法去实现: 1.安装插件:https://atom.io/packages/up2date 2.使用apt源更新: sudo apt-get ...
- 【Gradle】配置中引用的jar包版本后面自动加冒号导致引入jar包失败的问题/gradle中引用jar包版本不一致的问题/gradle中引用jar失败的问题 解决方法
idea中 gradle中 引用jar包,版本后面默认加:的问题 gradle中引用jar包版本不一致的问题 gradle中引用jar失败的问题 如上题目所示,三个问题其实都是同一样的简单又恶心,因为 ...
- BUPT复试专题—排序(2009)
题目描述 查找序列a 中小于 b 的第 i 个数的数的个数 输入 输入有多组,每组四行第一行:序列a个数N第二行:(序列a的)N个数,升序排列第三行:序列b个数M 第四行:(序列b的)M个数,升序排列 ...
- ZT:三十个好习惯
- 使用UltraISO刻录自己的音乐CD步骤
1.文件->新建->音乐光盘映像. 2.在左下方,“本地目录”中,找到音乐所在目录,右下方会出现mp3等音乐文件. 3.在右下方,点击音乐文件,右键选“添加”.音乐文件会出现在右上方窗口里 ...
- 用df命令显示磁盘使用量和占用率。
使用“df -k”命令,以k为单位显示磁盘使用量和占用率. root@gsg43:/tmp# df -kFilesystem 1K-blocks Used Available Use% ...