【BZOJ 3884】 上帝与集合的正确用法
【题目链接】
【算法】
通过欧拉拓展定理,列出递推公式
【代码】
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll T,N;
map<ll,ll> M; template <typename T> inline void read(T &x) {
ll f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
} ll power(ll a,ll n,ll P) {
ll res;
if (n == ) return ;
if (n == ) return a % P;
res = power(a,n>>,P);
res = res * res % P;
if (n & ) res = res * a % P;
return res;
} ll phi(ll x) {
ll i,ret=x;
for (i = ; i <= sqrt(x); i++) {
if (x % i == ) {
while (x % i == ) x /= i;
ret = ret / i * (i - );
}
}
if (x > ) ret = ret / x * (x - );
return ret;
} inline ll calc(ll n) {
if (M.count(n)) return M[n];
return M[n] = power(,calc(phi(n))+phi(n),n);
} int main() { M[] = ;
read(T);
while (T--) {
read(N);
writeln(calc(N));
} return ;
}
【BZOJ 3884】 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- 解题:BZOJ 3884 上帝与集合的正确用法
题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ 3884 上帝与集合的正确用法题解
一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...
随机推荐
- CodeChef - LEMOVIE Little Elephant and Movies
Read problems statements in Mandarin Chineseand Russian. Little Elephant from Zoo of Lviv likes to w ...
- java基础 6 基本类型与运算
1 包装类型 Integer的缓存池为 -128 - 127: 八个基本类型 占bit 与字节 8 bit = 1 字节 boolean 1 byte 8 char ...
- android EditText禁止复制粘贴完整代码
<!-- 定义基础布局LinearLayout --> <LinearLayout xmlns:android="http://schemas.android.com/ap ...
- Centos7配置Grafana对接OpenLDAP
在grafana的主配置文件grafana.ini中开启LDAP认证 注意:grafana有两个地方需要指定(/etc/grafana/grafana.ini和/usr/share/grafana/c ...
- python爬虫遇到10060
python爬虫遇到10060 学习了:https://blog.csdn.net/wetest_tencent/article/details/51272981 可以设置代理,可以手动进行图片获取:
- CSS3绘制灰太狼动画,绝对精彩
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 线段树区间更新,区间统计+离散化 POJ 2528 Mayor's posters
题意:有一个非常长的板子(10000000长),在上面贴n(n<=10000)张海报.问最后从外面能看到几张不同的海报. 由于板子有10000000长,直接建树肯定会爆,所以须要离散化处理,对于 ...
- 传奇的诞生,PHP三位创始人简介
PHP到现在为止已经诞生12年了.在这期间它经过不断改善,已经成为Web开发最重要的语言之一.PHP能有今天这样的成就,它的3位创始人(Rasmus Lerdorf.Zeev Suraski和Andi ...
- C#语言 函数
- Erlang进程堆垃圾回收机制
原文:Erlang进程堆垃圾回收机制 作者:http://blog.csdn.net/mycwq 每一个Erlang进程创建之后都会有自己的PCB,栈,私有堆.erlang不知道他创建的进程会用到哪种 ...