A.Relic Discovery

题目描述

Recently, paleoanthropologists have found historical remains on an island in the Atlantic Ocean. The most inspiring thing is that they excavated in a magnificent cave and found that it was a huge tomb. Inside the construction, researchers identified a large number of skeletons, and funeral objects including stone axe, livestock bones and murals. Now, all items have been sorted, and they can be divided into N types. After they were checked attentively, you are told that there are Ai items of the i-th type. Further more, each item of the i-th type requires Bi million dollars for transportation, analysis, and preservation averagely. As your job, you need to calculate the total expenditure. 

输入描述:

The first line of input contains an integer T which is the number of test cases. For each test case, the first line contains an integer N which is the number of types. In the next N lines, the i-th line contains two numbers A_i and B_i as described above. All numbers are positive integers and less than 101.

输出描述:

For each case, output one integer, the total expenditure in million dollars.

输入例子:
1
2
1 2
3 4
输出例子:
14

-->

示例1

输入

1
2
1 2
3 4

输出

14
解题思路:简单水过!
AC代码:
 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int t,n,a,b,sum;
int main(){
while(cin>>t){
while(t--){
cin>>n;sum=;
while(n--){
cin>>a>>b;
sum+=a*b;
}
cout<<sum<<endl;
}
}
return ;
}

B.Pocket Cube

题目描述

The Pocket Cube, also known as the Mini Cube or the Ice Cube, is the 2×2×2 equivalence of a Rubik’s Cube. The cube consists of 8 pieces, all corners. 
Each piece is labeled by a three dimensional coordinate (h,k,l) where h,k,l ∈{0,1}. Each of the six faces owns four small faces filled with a positive integer. 
For each step, you can choose a certain face and turn the face ninety degrees clockwise or counterclockwise. 
You should judge that if one can restore the pocket cube in one step. We say a pocket cube has been restored if each face owns four same integers. 

输入描述:

The first line of input contains one integer N(N ≤ 30) which is the number of test cases.
For each test case, the first line describes the top face of the pocket cube, which is the common 2×2 face of pieces labelled by (0,0,1),(0,1,1),(1,0,1),(1,1,1). Four integers are given corresponding to the above pieces.
The second line describes the front face, the common face of (1,0,1),(1,1,1),(1,0,0),(1,1,0). Four integers are given corresponding to the above pieces. 
The third line describes the bottom face, the common face of (1,0,0),(1,1,0),(0,0,0),(0,1,0). Four integers are given corresponding to the above pieces. 
The fourth line describes the back face, the common face of (0,0,0),(0,1,0),(0,0,1),(0,1,1). Four integers are given corresponding to the above pieces.
The fifth line describes the left face, the common face of (0,0,0),(0,0,1),(1,0,0),(1,0,1). Four integers are given corresponding to the above pieces.
The six line describes the right face, the common face of (0,1,1),(0,1,0),(1,1,1),(1,1,0). Four integers are given corresponding to the above pieces. 
In other words, each test case contains 24 integers a,b,c to x. You can flat the surface to get the surface development as follows.

 

输出描述:

For each test case, output YES if can be restored in one step, otherwise output NO.

输入例子:
4
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
6 6 6 6
1 1 1 1
2 2 2 2
3 3 3 3
5 5 5 5
4 4 4 4
1 4 1 4
2 1 2 1
3 2 3 2
4 3 4 3
5 5 5 5
6 6 6 6
1 3 1 3
2 4 2 4
3 1 3 1
4 2 4 2
5 5 5 5
6 6 6 6
输出例子:
YES
YES
YES
NO

-->

示例1

输入

4
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
6 6 6 6
1 1 1 1
2 2 2 2
3 3 3 3
5 5 5 5
4 4 4 4
1 4 1 4
2 1 2 1
3 2 3 2
4 3 4 3
5 5 5 5
6 6 6 6
1 3 1 3
2 4 2 4
3 1 3 1
4 2 4 2
5 5 5 5
6 6 6 6

输出

YES
YES
YES
NO
解题思路:简单模拟,看转一步是否到位,即每一面的数字相同即可。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int n,o[],t[];bool flag;
bool judge(){
for(int i=;i<=;i+=)
for(int j=i+;j<i+;++j)
if(t[j]!=t[j-])return false;
return true;
}
void restore(){
for(int i=;i<=;++i)t[i]=o[i];
}
int main(){
while(cin>>n){
while(n--){
for(int i=;i<=;++i)cin>>o[i],t[i]=o[i];
flag=judge();
if(!flag){//左上旋
t[]=t[],t[]=t[],t[]=t[],t[]=t[];
t[]=t[],t[]=t[],t[]=o[],t[]=o[];
flag=judge();
if(!flag){//左下旋
restore();
t[]=t[],t[]=t[],t[]=t[],t[]=t[];
t[]=t[],t[]=t[],t[]=o[],t[]=o[];
flag=judge();
}
}
if(!flag){//上左旋
restore();
t[]=t[],t[]=t[],t[]=t[],t[]=t[];
t[]=t[],t[]=t[],t[]=o[],t[]=o[];
flag=judge();
if(!flag){//上右旋
restore();
t[]=t[],t[]=t[],t[]=t[],t[]=t[];
t[]=t[],t[]=t[],t[]=o[],t[]=o[];
flag=judge();
}
}
if(!flag){//正左旋
restore();
t[]=t[],t[]=t[],t[]=t[],t[]=t[];
t[]=t[],t[]=t[],t[]=o[],t[]=o[];
flag=judge();
if(!flag){//正右旋
restore();
t[]=t[],t[]=t[],t[]=t[],t[]=t[];
t[]=t[],t[]=t[],t[]=o[],t[]=o[];
flag=judge();
}
}
if(flag)cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}
return ;
}

C.Pocky

题目描述

Let’s talking about something of eating a pocky. Here is a Decorer Pocky, with colorful decorative stripes in the coating, of length L. 
While the length of remaining pocky is longer than d, we perform the following procedure. We break the pocky at any point on it in an equal possibility and this will divide the remaining pocky into two parts. Take the left part and eat it. When it is not longer than d, we do not repeat this procedure. 
Now we want to know the expected number of times we should repeat the procedure above. Round it to 6 decimal places behind the decimal point. 

输入描述:

The first line of input contains an integer N which is the number of test cases. Each of the N lines contains two float-numbers L and d respectively with at most 5 decimal places behind the decimal point where 1 ≤ d,L ≤ 150.

输出描述:

For each test case, output the expected number of times rounded to 6 decimal places behind the decimal point in a line.

输入例子:
6
1.0 1.0
2.0 1.0
4.0 1.0
8.0 1.0
16.0 1.0
7.00 3.00
输出例子:
0.000000
1.693147
2.386294
3.079442
3.772589
1.847298

-->

示例1

输入

6
1.0 1.0
2.0 1.0
4.0 1.0
8.0 1.0
16.0 1.0
7.00 3.00

输出

0.000000
1.693147
2.386294
3.079442
3.772589
1.847298
解题思路:因为ln(2)≈0.693147,因此大胆验证一下数据,发现当l>d时,f=ln(l/d)+1,否则f=0。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int t;double l,d;
int main(){
while(cin>>t){
while(t--){
cin>>l>>d;
if(l<=d)cout<<"0.000000"<<endl;
else cout<<setiosflags(ios::fixed)<<setprecision()<<(1.0+log(l/d))<<endl;
}
}
return ;
}

牛客国庆集训派对Day_7的更多相关文章

  1. 牛客国庆集训派对Day6 A Birthday 费用流

    牛客国庆集训派对Day6 A Birthday:https://www.nowcoder.com/acm/contest/206/A 题意: 恬恬的生日临近了.宇扬给她准备了一个蛋糕. 正如往常一样, ...

  2. 2019牛客国庆集训派对day5

    2019牛客国庆集训派对day5 I.Strange Prime 题意 \(P=1e10+19\),求\(\sum x[i] mod P = 0\)的方案数,其中\(0 \leq x[i] < ...

  3. 牛客国庆集训派对Day1 L-New Game!(最短路)

    链接:https://www.nowcoder.com/acm/contest/201/L 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  4. 牛客国庆集训派对Day4 J-寻找复读机

    链接:https://www.nowcoder.com/acm/contest/204/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  5. 牛客国庆集训派对Day4 I-连通块计数(思维,组合数学)

    链接:https://www.nowcoder.com/acm/contest/204/I 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  6. 牛客国庆集训派对Day1-C:Utawarerumono(数学)

    链接:https://www.nowcoder.com/acm/contest/201/C 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  7. 牛客国庆集训派对Day2 Solution

    A    矩阵乘法 思路: 1° 牛客机器太快了,暴力能过. #include <bits/stdc++.h> using namespace std; #define N 5000 in ...

  8. 2019 牛客国庆集训派对day1-C Distinct Substrings(exkmp+概率)

    链接:https://ac.nowcoder.com/acm/contest/1099/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...

  9. 2018 牛客国庆集训派对Day4 - H 树链博弈

    链接:https://ac.nowcoder.com/acm/contest/204/H来源:牛客网 题目描述 给定一棵 n 个点的树,其中 1 号结点是根,每个结点要么是黑色要么是白色 现在小 Bo ...

随机推荐

  1. [git] csdn之code平台的使用

    简单的说一下GIT的使用.... 代码和托管平台是csdn刚出来没多久的code.csdn.net [中文的界面什么的简单点,好理解,嗯,易用....] Git 使用最新版:Git-1.8.4-pre ...

  2. Flume-ng-sdk源码分析

    Flume 实战(2)--Flume-ng-sdk源码分析 - mumuxinfei - 博客园 http://www.cnblogs.com/mumuxinfei/p/3823266.html

  3. 如何去除Office Excel的密码保护?

    企图更改Excel文件内容,然而却弹出如下提示: 根据提示,我尝试解除保护表,却要求输入密码: 这就尴尬了=_=密码不是我设定的 问了度娘,找到了解决方案 将Excel文件扩展名更改为rar, 使用压 ...

  4. 正则工具类以及FinalClass

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/jadyer/article/details/27811103 完整版见https://jadyer. ...

  5. luogu2398 SUM GCD

    题目大意:求sum i(1->n) (sum j(1->n) (gcd(i,j))). 对于每对(i,j)都来一次gcd很慢,但是我们知道,一个约数i在1~n范围内是n/i个数的约数.gc ...

  6. 项目中Redis分库

    Redis中有16个库 默认第0个库 配置库的设置: 不同的库  key可以重复哈 公司的多个不同分布式项目,但是只有一个redis时候,以项目方式区分不同的库 每个项目连接相同 但是库不同

  7. JS基础篇--JS的event.srcElement与event.target(触发事件对象)

    IE下,event对象有srcElement属性,但是没有target属性; Firefox下,event对象有target属性,但是没有srcElement属性.但他们的作用是相当的,即: fire ...

  8. HUST - 1010 The Minimum Length(最小循环节)

    1.赤裸裸的最小循环节 2. 3. #include<iostream> #include<stdio.h> #include<string.h> using na ...

  9. 如何在chrome上设置Bing为默认搜索引擎,在设置中无法直接设置

  10. 关于encodeURIComponent的用法

    定义和用法 encodeURIComponent() 函数可把字符串作为 URI 组件进行编码. 语法 encodeURIComponent(URIstring) 参数  描述  URIstring  ...