# version 1.0
def connect_mysql(sql, oper_type="select", data_l=None):
conn = pymysql.connect(host='localhost', user="root", password="",
database="work", port=3306)
cur = conn.cursor()
if oper_type == "insert":
cur.executemany(sql, data_l)
conn.commit()
else:
cur.execute(sql)
result = cur.fetchall()
# print(type(result), "result")
conn.close()
return result def process_jobs(field_name):
sql = "select j." + field_name + " FROM personal_jobs j"
column_name = connect_mysql(sql, oper_type="select")
row_total = (len(column_name))
row_category = set(column_name) # init category dict
category_dict = {}
for k in row_category:
category_dict[k] = 0 # calculate amount
cal_nmu = 0
for k in row_category:
for r in column_name:
if r == k:
cal_nmu += 1
category_dict[k] = cal_nmu
cal_nmu = 0
print(type(category_dict.items()), category_dict.items())
print(row_total, len(category_dict.items()))
return row_total, category_dict process_jobs("job_salary")
version 1.1
def count_times(all_list):
ls = []
item_list = list(set(all_list))
for m in item_list:
c = all_list.count(m)
ls.append([m, c])
return sorted(ls) def process_salary(field_name):
# sql = "select " + field_name + " from work.personal_jobs where job_exp = '1-3年';"
sql = "select " + field_name + " from work.personal_jobs where job_exp = '1年以内' or job_exp = '经验不限';"
original_sal = connect_mysql(sql)
# sort salary order
row_category = list(set(original_sal))
general_min, general_avg, general_max = [], [], []
# cal_num = 0
for sal in row_category:
# calculate category amount
# for cat in column_name:
# if cat == sal:
# cal_num += 1
# process salary
if field_name == "job_salary":
sal_tmp = str(sal).strip("('").strip("K',)").split("K-")
general_min.append(int(sal_tmp[0]))
general_max.append(int(sal_tmp[1])) # process experience
if field_name == "job_exp":
print(original_sal) # initial again
# cal_num = 0 # calculate min sal
min_sal = count_times(general_min)
for m1 in min_sal:
min_s = str(m1[0]) + "K"
m1[0] = min_s # calculate max sal
max_sal = count_times(general_max)
for m2 in max_sal:
min_s = str(m2[0]) + "K"
m2[0] = min_s # calculate avg sal
avg_sal = count_times(original_sal)
print("original: ", avg_sal)
for a1 in avg_sal:
sal_tmp_1 = str(a1[0]).strip("('").strip("K',)").split("K-")
a1[0] = (int(sal_tmp_1[0]) + int(sal_tmp_1[1])) / 2.0
avg_sal = sorted(avg_sal) for a2 in avg_sal:
a2[0] = str(a2[0]) + "K"
# debug
print(len(min_sal), min_sal)
print(len(avg_sal), avg_sal)
print(len(max_sal), max_sal)
return min_sal, avg_sal, max_sal # process_salary("job_salary")
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from collections import Counter
from scipy.misc import imread def process_reqirement(field_name):
sql = "select " + field_name + " from work.personal_jobs where job_exp = '1年以内' or job_exp = '经验不限';"
original_req = connect_mysql(sql)
userdict = ["C", "C#", "C++", "Go", "Linux", "MongoDB", "Mysql", "PostgreSQL", "Ajax", "Bootstrap", "CSS", "Django", "Docker", "Flask", "Git", "http", "tcp", "Java", "JavaScript", "Jquery", "Oracle", "Python", "Redis", "Ruby", "Scrapy", "shell", "Tornado", "Web", "Zabbix", "RESTful", "云计算", "分布式", "前端", "后端", "大数据", "高并发", "数据分析", "数据挖掘", "机器学习", "爬虫", "算法", "自动化", "运维", "集群"] jieba.load_userdict(userdict)
# print(type(original_req), str(original_req))
text0 = Counter(jieba.cut(str(original_req)))
text1 = " ".join(jieba.cut(str(original_req)))
[item for item in sorted(text0.values())]
# print(text0.keys(), text0.values())
# print(type(text0), text0) # # create word cloud
# wordcloud = WordCloud(font_path=r"D:\wwj\work\script\web\personal\database_operation\MSYH.TTC",
# background_color="white", mask=imread("china.jpg")).generate(text1)
# plt.imshow(wordcloud)
# plt.axis("off")
# plt.show() # find requirement item what we really need
req_list = []
# print(len(text0.keys()), text0)
for k, v in text0.items():
for kk, vv in text0.items():
if str(k).lower() == str(kk).lower():
# print(k, v)
req_list.append([k, (v + vv)])
# print(k, v)
break
print(len(req_list), req_list) for t in userdict:
for k, v in text0.items():
if t.lower() == str(k).lower():
req_list.append([t, v])
break
# print(req_list)
return req_list
process_reqirement("job_requirement")
def user_defined(file_name):
user_list = []
with open(file_name, "r", encoding="utf8") as f:
for i in f:
user_list.append(i.strip())
return user_list def process_company(field_name):
sql = "select " + field_name + " from work.personal_jobs"
company = [list(i) for i in connect_mysql(sql)]
user_list = user_defined("t.txt")
user_list = ['C','C#','C++','Go','Linux','MongoDB','Mysql','PostgreSQL','Ajax','Bootstrap','CSS','Django','Docker','Flask','Git','http','tcp','Java','JavaScript','Jquery','Oracle','Python','Redis','Ruby','Scrapy','shell','Tornado','Web','RESTful','云计算','分布式','前端','后端','大数据','高并发','数据分析','数据挖掘','机器学习','爬虫','算法','自动化','测试','运维','集群']
jieba.load_userdict(user_list)
me_list = ['python', 'django', 'linux', '运维', '自动化', '爬虫', '数据分析', 'shell', 'mysql', 'oracle']
req_list, suit_list = [], []
for req in company:
req_dict = Counter(jieba.cut(req[1]))
req_list.append([req[0], [k for k in req_dict.keys() if k in user_list]])
for r in req_list:
if len(r[1]) > 0:
# print(r[1])
own = [item for item in me_list if item in r[1]]
if len(own) > 0:
suit_list.append([r[0], int(len(own) * 100/len(r[1]))])
return sorted(suit_list, key=lambda x: x[1])
# print(sorted(suit_list, key=lambda x: x[1]))
process_company("company_name, job_requirement")

process data的更多相关文章

  1. 1.3 Quick Start中 Step 8: Use Kafka Streams to process data官网剖析(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Step 8: Use Kafka Streams to process data ...

  2. [CDH] Process data: integrate Spark with Spring Boot

    c 一.Spark 统计计算 简单统计后写入Redis. /** * 订单统计和乘车人数统计 */ object OrderStreamingProcessor { def main(args: Ar ...

  3. Flink应用案例:How Trackunit leverages Flink to process real-time data from industrial IoT devices

    January 22, 2019Use Cases, Apache Flink Lasse Nedergaard     Recently there has been significant dis ...

  4. [AJAX系列]$.post(url,[data],[fn],[type])

    概述: 通过远程HTTP POST请求载入信息 参数: url:发送请求地址 data:待发送Key/value值 callback:发送成功时回调函数 type:返回内容格式  xml  html ...

  5. Data Science at the Command Line学习笔记(二)

    1.vagrant建立简单httpserver方法: 1)映射端口 修改Vagrantfile, 末尾添加本地端口和虚机端口的映射关系, 然后执行vagrant reload. Vagrant::Co ...

  6. [Chapter 3 Process]Practice 3.3 Discuss three major complications that concurrent processing adds to an operating system.

    3.3  Original version of Apple's mobile iOS operating system provied no means of concurrent processi ...

  7. Learn know more about big data

    As we all know,we are in a big data age now."Every sword has two slides",as a ITer,we shou ...

  8. Monitoring and Tuning the Linux Networking Stack: Receiving Data

    http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ ...

  9. Big Data Analytics for Security(Big Data Analytics for Security Intelligence)

    http://www.infoq.com/articles/bigdata-analytics-for-security This article first appeared in the IEEE ...

随机推荐

  1. docker容器管理基础

    1.命令: docker info #查看服务器上docker详细信息 docker search #搜索镜像 docker image pull nginx:1.14-alpine #下载一个镜像 ...

  2. 怎样在github上协同开发

    How to co-work wither parter via github. Github协同开发情景模拟 Github不仅有很多开源的项目可以参考,同样也是协同开发的最佳工具,接下来的就模拟一下 ...

  3. CSA Round #50 (Div. 2 only) Min Swaps(模拟)

    传送门 题意 给出一个排列,定义\(value为\sum_{i=1}^{n-1}abs(f[i+1]-f[i])\) \(swap(a[i],a[j])(i≠j)为一次交换\),询问最少的交换次数使得 ...

  4. 在 React项目中使用 bootstrap

    在使用create-react-app 创建的项目中使用 bootstrap; 安装react-bootstrap; npm install react-bootstrap --savenpm ins ...

  5. 145 Binary Tree Postorder Traversal 二叉树的后序遍历

    给定一棵二叉树,返回其节点值的后序遍历.例如:给定二叉树 [1,null,2,3],   1    \     2    /   3返回 [3,2,1].注意: 递归方法很简单,你可以使用迭代方法来解 ...

  6. Python读取文件行数不对

    对于一个大文件,读取每一个行然后处理,用readline()方法老是读不全,会读到一半就结束,也不报错: 总之处理的行数跟 wc -l 统计的不一样,调试了一下午,改用 with open('xxx. ...

  7. discuz x2.5用户注册后邮箱认证后无法收到邮件或者直接进垃圾箱

    又是一个周末,jquery特效继续折腾我那discuz论坛,我开启了个邮箱验证,恶意注册的太恶心了,没有办法. 能稍微屏蔽点,但是问题来了,据亲们反应,无法收到验证邮件,或者有时间直接进入垃圾箱,这个 ...

  8. 前端打印console

    很多时候,我们都想知道,是否已经选中或得到数据时,我们可以利用console 打印出来.console有几种方式使用.具体有: console.log($scope.getParkId); conso ...

  9. 组件的 state 和 setState

    state 我们前面提到过,一个组件的显示形态是可以由它数据状态和配置参数决定的.一个组件可以拥有自己的状态,就像一个点赞按钮,可以有“已点赞”和“未点赞”状态,并且可以在这两种状态之间进行切换.Re ...

  10. MySQL读写分离实现

    数据库写入效率要低于读取效率,一般系统中数据读取频率高于写入频率,单个数据库实例在写入的时候会影响读取性能,这是做读写分离的原因.实现方式主要基于mysql的主从复制,通过路由的方式使应用对数据库的写 ...