bzoj【2818】Gcd

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint
对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

题解一(自己yy)

  phi[i]表示与x互质的数的个数

  即gcd(x,y)=1 1<=y<x

  ∴对于x,y 若a为素数

  则gcd(xa,ya)=a

  即满足xa<=N即可,这个答案即为满足条件数的个数

  n是10e7,可以O(N)先求出phi

  一种方法可以N log N即,二分质数使其满足,但不够优秀

  发现x(枚举值)不断增大,即质数个数不断减少,所以单调性

  所以O(N)即可。

题解二 

  求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对

  枚举每个素数,然后每个素数p对于答案的贡献就是(1 ~ n / p) 中有序互质对的个数
  而求1~m中有序互质对x,y的个数,可以令y >= x, 当y = x时,有且只有y = x = 1互质,

  当y > x时,确定y以后符合条件的个数x就是  phiy
  所以有序互质对的个数为(1 ~ n/p)的欧拉函数之和乘2减1(要求的是有序互质对,乘2以后减去(1, 1)多算的一次)
  那么就只需要先筛出欧拉函数再求个前缀和就可以了

思路二更优秀,hzw大佬。

 #include<iostream>
#include<cstdio>
#define ll long long
#define N 10000005
using namespace std;
int n,p,tot;
int phi[N],pri[];
bool mark[N];
ll ans,sum[N];
void getphi()
{
phi[]=;
for(int i=;i<=n;i++)
{
if(!mark[i]){phi[i]=i-;pri[++tot]=i;}
for(int j=;j<=tot;j++)
{
int x=pri[j];
if(i*x>n)break;
mark[i*x]=;
if(i%x==){phi[i*x]=phi[i]*x;break;}
else phi[i*x]=phi[i]*phi[x];
}
}
}
int main()
{
scanf("%d",&n);
getphi();
for(int i=;i<=n;i++)
sum[i]=sum[i-]+phi[i];
for(int i=;i<=tot;i++)
ans+=sum[n/pri[i]]*-;
printf("%lld",ans);
return ;
}

bzoj 2818 GCD 数论 欧拉函数的更多相关文章

  1. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

  2. bzoj 2818 gcd 线性欧拉函数

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...

  3. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  4. BZOJ 2818 GCD(欧拉函数)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37161 题意:gcd(x, y) = 质数, 1 <= x, ...

  5. 【BZOJ】2818: Gcd(欧拉函数+质数)

    题目 传送门:QWQ 分析 仪仗队 呃,看到题后感觉很像上面的仪仗队. 仪仗队求的是$ gcd(a,b)=1 $ 本题求的是$ gcd(a,b)=m $ 其中m是质数 把 $ gcd(a,b)=1 $ ...

  6. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  7. BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)

    标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...

  8. BZOJ 2818 Gcd 线性欧拉

    题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...

  9. 【BZOJ】2818: Gcd(欧拉函数/莫比乌斯)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2818 我很sb的丢了原来做的一题上去.. 其实这题可以更简单.. 设 $$f[i]=1+2 \tim ...

随机推荐

  1. 备忘录模式及php实现

    备忘录模式: 又叫做快照模式或Token模式,在不破坏封闭的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将该对象恢复到原先保存的状态. 角色: 1.创建者:负责创建一个备忘 ...

  2. flex和box兼容性写法

    display: -webkit-box; /* Chrome 4+, Safari 3.1, iOS Safari 3.2+ */ display: -moz-box; /* Firefox 17- ...

  3. Java基础--java简介

    1.Java的起源: Oak  -->  Java 2.Java的发展 Java1.0 Java2 JavaSE:Java平台标准版 JavaME:微型版 JavaEE:企业版 Sun公司 or ...

  4. Web服务器安全设置

    Web服务器安全方面一直重视程度不够,是各种网站经常被黑的主要原因.下面笔者总结了一下关于怎样保证Web服务器安全的措施,希望能给那些服务器尚存在漏洞的用户提供一些帮助. 本文主要以Windows s ...

  5. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  6. dnsquery - 使用解析程序查询域名服务器

    SYNOPSIS(总览) dnsquery [-n nameserver ] [-t type ] [-c class ] [-r retry ] [-p period ] [-d ] [-s ] [ ...

  7. docker 应用数据的管理之bind mounts

    创建容器使用bind mounts 挂载文件系统.宿主机文件系统会覆盖掉容器里初始数据 [root@localhost ~]# mkdir /www/htpm -pv mkdir: 已创建目录 &qu ...

  8. easyui前端框架01

    一. 三大前端框架的特点 1.easyui=jquery+html4 优点:快速开发.功能齐全 .免费 缺点:不好看.不支持相应式开发 2.bootstrap=jquery+html5 优点: 功能强 ...

  9. 主成分分析、因子分析、ICA(未完成)

    并且SVD分解也适用于一般的矩阵. 主成分分析可以简单的总结成一句话:数据的压缩和解释.常被用来寻找判断某种事物或现象的综合指标,并且给综合指标所包含的信息以适当的解释.在实际的应用过程中,主成分分析 ...

  10. 测试常用的linux命令

    一.系统 1.halt:         关机   poweroff: 关机 2.reboot:     重启 二.处理目录和文件的命令 1.ll:     显示文件详细信息 ls:    显示文件目 ...