Cooking Schedule Problem Code: SCHEDULE

Chef is a well-known chef, and everyone wishes to taste his dishes.

As you might know, cooking is not an easy job at all and cooking everyday makes the chef very tired. So, Chef has decided to give himself some days off.

Chef has made a schedule for the next N days: On i-th day if Ai is equal to 1 then Chef is going to cook a delicious dish on that day, if Ai is equal to 0 then Chef is going to rest on that day.

After Chef made his schedule he discovered that it's not the best schedule, because there are some big blocks of consecutive days where Chef will cook which means it's still tiring for Chef, and some big blocks of consecutive days where Chef is going to rest which means chef will be bored doing nothing during these days.

Which is why Chef has decided to make changes to this schedule, but since he doesn't want to change it a lot, he will flip the status of at most K days. So for each day which Chef chooses, he will make it 1 if it was 0 or he will make it 0 if it was 1.

Help Chef by writing a program which flips the status of at most K days so that the size of the maximum consecutive block of days of the same status is minimized.

Input

The first line of the input contains an integer T denoting the number of test cases.

The first line of each test case contains two integers: N denoting the number of days and K denoting maximum number of days to change.

The second line contains a string of length N , of which the i-th character is 0 if chef is going to rest on that day, or 1 if chef is going to work on that day

Output

For each test case, output a single line containing a single integer, which is the minimum possible size of maximum block of consecutive days of the same status achievable.

Constraints

  • 1 ≤ T ≤ 11,000
  • 1 ≤ N ≤ 106
  • The sum of N in all test-cases won't exceed 106.
  • 0 ≤ K ≤ 106
  • 0 ≤ Ai ≤ 1

Subtasks

  • Subtask #1 (20 points): N ≤ 10
  • Subtask #2 (80 points): Original Constraints

Example

Input:

2
9 2
110001111
4 1
1001
Output:

2
2
思路:
用大根堆存连续相同序列的长度,同时存下标号及切割次数(为了在最长的连续序列相同的前提下先切切割次数少的,因此要先用一个大一些的数代表切割0次,每切割一次这个数减1),用另一个数组记录这个序列的最初长度。每次切割长度最长的序列,长度变成最初的长度/(切割次数+1),再次加进堆(只需加一段即可)。直到剩下的最长长度只有2。对于小于2的情况,特殊处理即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
int _;
int n,k,a[];
char c[];
priority_queue <pair<int,pair<int,int>>> q;
int main()
{
scanf("%d",&_);
while (_--)
{
scanf("%d%d",&n,&k);
scanf("%s",c);
while (!q.empty()) q.pop();
int tot=,cnt=;;
int i;
for (i=;i<n;i++)
if (c[i]==c[i-]) tot++;
else
{
//cout<<tot<<endl;
q.push({tot,{,cnt}});
a[cnt]=tot;
cnt++;
tot=;
}
q.push({tot,{,cnt}});
a[cnt]=tot;
cnt++;
if (q.top().first==)
{
puts("");
continue;
}
char p='';
tot=;
int len=strlen(c);
for (i=;i<len;i++)
{
if (c[i]!=p) tot++;
if (p=='') p=''; else p='';
}
if (tot<=k)
{
puts("");
continue;
}
p='';
tot=;
for (i=;i<len;i++)
{
if (c[i]!=p) tot++;
if (p=='') p=''; else p='';
}
if (tot<=k)
{
puts("");
continue;
}
//cout<<"hhhhhhhhhh"<<endl;
//cout<<q.top()<<endl;
int x;
while (k--)
{
x=q.top().first;
if (x<=) break;
int ix=q.top().second.second;
int nval=a[ix];
int id=q.top().second.first;
id--;
int im=-id;
x=nval/(im+);
q.pop();
q.push({x,{id,ix}});
}
printf("%d\n",q.top().first);
}
return ;
}

Cooking Schedule Problem Code: SCHEDULE(优先队列)的更多相关文章

  1. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. HDOJ 1534 Schedule Problem 差分约束

    差分约数: 求满足不等式条件的尽量小的值---->求最长路---->a-b>=c----> b->a (c) Schedule Problem Time Limit: 2 ...

  3. Maker's Schedule, Manager's Schedule

    http://www.paulgraham.com/makersschedule.html manager's schedule 随意性强,指随时安排会面,开会等活动的 schedule; maker ...

  4. POJ 3553 Task schedule【拓扑排序 + 优先队列 / 贪心】

    Task schedule Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 515 Accepted: 309 Special J ...

  5. ZOJ 1455 Schedule Problem(差分约束系统)

    // 题目描述:一个项目被分成几个部分,每部分必须在连续的天数完成.也就是说,如果某部分需要3天才能完成,则必须花费连续的3天来完成它.对项目的这些部分工作中,有4种类型的约束:FAS, FAF, S ...

  6. Schedule Problem spfa 差分约束

    题意:有n个任务,给出完成n个任务所需时间,以及一些任务安排.任务安排有四种: FAS a b:任务a需在任务b开始后完成. FAF a b:任务a需在任务b完成后完成. SAF a b:任务a需在任 ...

  7. HDU-1534 Schedule Problem

    四种约束条件..照做就行了.. 最长路建图. #include <cstdio> #include <cstdlib> #include <cstring> #in ...

  8. lr11.0负载测试 real-world schedule 与basic schedule的区别是什么

    real-world schedule 是真实场景模式  可以通过增加ACTION来增加多个用户 basic schedule 是我们以前用的 经典模式  只能设置一次负载的上升和下降

  9. Holes in the text Add problem to Todo list Problem code: HOLES

    import sys def count_holes(letter): hole_2 = ['A', 'D', 'O', 'P', 'Q', 'R'] if letter == 'B': return ...

随机推荐

  1. git 本地与远程仓库出现代码冲突解决方法

    提交过程中报错: [python@heaven-00 Selesystem]$ git push -u origin masterUsername for 'https://github.com': ...

  2. HLS协议详解

    1. HLS HLS是为移动设备开发的基于HTTP的流媒体解决方案. 2. 原理: 将视频或流切分成小片(TS), 并建立索引(M3U8). 支持视频流:H.264: 音频流:AAC 3. M3U8文 ...

  3. poj2368 Buttons

    题目描述 题解: 非常简单的巴什博弈问题. 简单来说保证$L+1$是$K$的因数即可. 决策是,先手取$x$个,后手就取$L+1-x$个. 那个$L>=2$真的很坑. 代码: #include& ...

  4. InnoDB INFORMATION_SCHEMA System Tables

    InnoDB INFORMATION_SCHEMA System Tables 可以使用InnoDB INFORMATION_SCHEMA系统表提取有关InnoDB管理的schema对象的元数据. 此 ...

  5. nginx 集群

    Nginx是什么? Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器.一直纳闷这个X是怎么来 ...

  6. UART中RTS、CTS

    RTS (Require ToSend,发送请求)为输出信号,用于指示本设备准备好可接收数据,低电平有效,低电平说明本设备可以接收数据. CTS (Clear ToSend,发送允许)为输入信号,用于 ...

  7. perl学习之:@_ $_

    question 1 :数组@xxx调用时,每个元素应该用$xxx[0]/$xxx[1]...   来表示所以$_[0]表示@_的一个元素,和默认缺省变量$_无关,是两个东西请查阅数组元素调用相关章节 ...

  8. PHP 配置文件php.ini文件优化

    PHP 5.3.3 safe_mode = On #控制php中的函数执行比如system() 这个函数可以调用系统目录 比如 rm ,打开这个配置之后,同时把很多文件操作的函数进行了权限控制 saf ...

  9. python书籍推荐:量化投资:以Python为工具

    所属网站分类: 资源下载 > python电子书 作者:mimi 链接:http://www.pythonheidong.com/blog/article/451/ 来源:python黑洞网 内 ...

  10. Android布局之相对布局——RelativeLayout

    此博文主要是相对布局xml属性的解析及实例. android:layout_above:此控件底部的边缘位于设定ID控件的上方 <Button android:id="@+id/btn ...