Lightoj 1005 Rooks(DP)
A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move vertically or horizontally from its current position and two rooks attack each other if one is on the path of the other. In the following figure, the dark squares represent the reachable locations for rook R1 from its current position. The figure also shows that the rook R1 and R2 are in attacking positions where R1 and R3 are not. R2 and R3 are also in non-attacking positions.
Now, given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n x n chessboard so that no two of them are in attacking positions.
Input
Input starts with an integer T (≤ 350), denoting the number of test cases.
Each case contains two integers n (1 ≤ n ≤ 30) and k (0 ≤ k ≤ n2).
Output
For each case, print the case number and total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions. You may safely assume that this number will be less than 1017.
Sample Input |
Output for Sample Input |
|
8 1 1 2 1 3 1 4 1 4 2 4 3 4 4 4 5 |
Case 1: 1 Case 2: 4 Case 3: 9 Case 4: 16 Case 5: 72 Case 6: 96 Case 7: 24 Case 8: 0 |
题目要求在n*n的棋盘上放k个车,问有多少种方法。
dp[i][j]代表前i行放j个车的方案数。则dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(n-(j-1));
或者使用组合数学做。答案是C(n,k)*A(n,k)
/* ***********************************************
Author :guanjun
Created Time :2016/6/9 16:02:10
File Name :1005.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
ll dp[][];
int n,k;
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
int T;
cin>>T;
for(int t=;t<=T;t++){
cin>>n>>k;
printf("Case %d: ",t);
if(k>n){
puts("");continue;
}
cle(dp);
dp[][]=;
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
if(j)dp[i][j]=dp[i-][j]+dp[i-][j-]*(n-j+);
else dp[i][j]=dp[i-][j];
}
}
printf("%lld\n",dp[n][k]);
}
return ;
}
Lightoj 1005 Rooks(DP)的更多相关文章
- 1005 - Rooks(规律)
1005 - Rooks PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB A rook is ...
- LightOJ 1364 树形DP
52张扑克牌,问拿到指定数量的4个花色的最少次数期望是多少,其中拿到joker必须马上将其视作一种花色,且要使后续期望最小. 转移很容易想到,主要是两张joker的处理,一个状态除了普通的4个方向的转 ...
- A Dangerous Maze (II) LightOJ - 1395(概率dp)
A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...
- Where to Run LightOJ - 1287(概率dp)
Where to Run LightOJ - 1287(概率dp) 题面长长的,看了半天也没看懂题意 不清楚的地方,如何判断一个点是否是EJ 按照我的理解 在一个EJ点处,要么原地停留五分钟接着走,要 ...
- (light OJ 1005) Rooks dp
http://www.lightoj.com/volume_showproblem.php?problem=1005 PDF (English) Statistics Forum Tim ...
- Light OJ 1005 - Rooks(DP)
题目大意: 给你一个N和K要求确定有多少种放法,使得没有两个车在一条线上. N*N的矩阵, 有K个棋子. 题目分析: 我是用DP来写的,关于子结构的考虑是这样的. 假设第n*n的矩阵放k个棋子那么,这 ...
- Rooks LightOJ - 1005
https://vjudge.net/problem/LightOJ-1005 题意:在n*n的矩形上放k个车,使得它们不能互相攻击,求方案数. ans[i][j]表示在i*i的矩形上放j个车的方案数 ...
- lightoj 1005 组合数学
题目链接:http://lightoj.com/volume_showproblem.php?problem=1005 #include <cstdio> #include <cst ...
- Light oj 1005 - Rooks (找规律)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1005 纸上画一下,找了一下规律,Ank*Cnk. //#pragma comm ...
随机推荐
- hibernate中时间比较的小笔记
// 开单时间 if (!"".equals(startDate) && startDate != null) { queryCondition = queryCo ...
- 洛谷 P2008 大朋友的数字
DP,动态规划 树状数组 最长不下降子序列 by GeneralLiu 题目 就是说给一串由 0~9 组成的序列 求 以 i (1~n) 结尾 的 最长不下降子序列 的 和 (最长不下降子序 ...
- [luoguP2886] [USACO07NOV]牛继电器Cow Relays(矩阵)
传送门 矩阵快速幂,本质是floyd 把 * 改成 + 即可 注意初始化 因为只有100条边,所以可以离散化 #include <cstdio> #include <cstring& ...
- WebApi下载附件文件
WebApi下载附件文件 1. [RoutePrefix("down")] public class FilesController : ApiController { [GET( ...
- Bzoj 2726 SDOI 任务安排
Memory Limit: 131072KB 64bit IO Format: %lld & %llu Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务 ...
- Flex里监听mouseDownOutside事件解决弹出窗口点击空白关闭功能
其实当用户在使用 PopUpManager 打开的某个组件外部单击时,会从该组件分派一个mouseDownOutside事件 监听该事件就能实现点击空白处关闭窗口的功能 this.addEventLi ...
- 16 个常用的yum 命令
1. yum [-y] install package_name2. yum remove package_name 卸载指定软件3. ...
- vijos 2035 奇数偶数与绚丽多彩的数
描述 Q先生是一个热爱学习的男孩子. 他认为一个 n 位的正整数 x 若能被称作是绚丽多彩的,一定要满足对于{1,3,5,7,9} 中任意一个奇数或者没有在 x 中出现,或者在 x 中出现了恰好奇数次 ...
- Nginx配置upstream实现负载均衡及keepalived实现nginx高可用
(原文链接:http://www.studyshare.cn/blog-front//blog/details/1159/0 ) 一.准备工作 1.准备两个项目,发布到不同的服务器上,此处使用2个虚拟 ...
- F - The Minimum Length
F - The Minimum Length HUST - 1010 #include<cstdio> #include<cstring> #include<iostre ...