费用流+线段树

看见这个题我们马上就能想到费用流,设立源汇,分别向每个点连接容量为1费用为0的边,然后相邻的点之间连边,费用为点权,跑费用流就行了,但是很明显这样会超时,那么我们要优化一下,我们观察费用流的过程,发现对于点与点之间的边,每次取一段区间相当于把正向边改为反向边,费用变负,于是我们可以用线段树来模拟这个过程,像费用流一样贪心地选取区间的最大子段和,然后取反,每次取k次,然后恢复。这样就好了

但是写的时候有很多问题,比如如何返回一个区间?结构体!参考了popoqqq大神的代码,发现我们可以通过重载小于号直接对结构体取max,这样就十分好写了

然后这道题有点卡常,一定要在重载的时候把传入参数变成const+引用,这样在cf上快了200ms

这就是传说中的五倍经验吗

#include<bits/stdc++.h>
using namespace std;
const int N = ;
namespace IO
{
const int Maxlen = N * ;
char buf[Maxlen], *C = buf;
int Len;
inline void read_in()
{
Len = fread(C, , Maxlen, stdin);
buf[Len] = '\0';
}
inline void fread(int &x)
{
x = ;
int f = ;
while (*C < '' || '' < *C) { if(*C == '-') f = -; ++C; }
while ('' <= *C && *C <= '') x = (x << ) + (x << ) + *C - '', ++C;
x *= f;
}
inline void read(int &x)
{
x = ;
int f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = (x << ) + (x << ) + c - ''; c = getchar(); }
x *= f;
}
inline void read(long long &x)
{
x = ;
long long f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = (x << 1ll) + (x << 3ll) + c - ''; c = getchar(); }
x *= f;
}
} using namespace IO;
struct data {
int l, r, v;
data() {}
data(int l, int r, int v) : l(l), r(r), v(v) {}
friend bool operator < (const data &a, const data &b) { return a.v < b.v; }
friend data operator + (const data &a, const data &b) { return data(a.l, b.r, a.v + b.v); }
};
struct node {
data lmax, rmax, mx, mn, lmin, rmin, sum;
int tag;
node() {}
node(int x, int v) {
lmax = rmax = mx = mn = lmin = rmin = sum = data(x, x, v);
}
friend node operator + (const node &a, const node &b) {
node c;
if(a.tag == -) return b;
if(b.tag == -) return a;
c.tag = ;
c.sum = a.sum + b.sum;
c.lmax = max(a.lmax, a.sum + b.lmax);
c.lmin = min(a.lmin, a.sum + b.lmin);
c.rmax = max(b.rmax, a.rmax + b.sum);
c.rmin = min(b.rmin, a.rmin + b.sum);
c.mx = max(max(a.mx, b.mx), a.rmax + b.lmax);
c.mn = min(min(a.mn, b.mn), a.rmin + b.lmin);
return c;
}
} tree[N << ], st[];
int n, q;
int a[N];
void paint(node &o)
{
swap(o.lmax, o.lmin);
swap(o.rmax, o.rmin);
swap(o.mx, o.mn);
o.sum.v *= -;
o.lmax.v *= -;
o.lmin.v *= -;
o.rmax.v *= -;
o.rmin.v *= -;
o.mx.v *= -;
o.mn.v *= -;
o.tag ^= ;
}
void pushdown(int x)
{
if(tree[x].tag <= ) return;
paint(tree[x << ]);
paint(tree[x << | ]);
tree[x].tag ^= ;
}
void build(int l, int r, int x)
{
if(l == r)
{
tree[x] = node(l, a[l]);
return;
}
int mid = (l + r) >> ;
build(l, mid, x << );
build(mid + , r, x << | );
tree[x] = tree[x << ] + tree[x << | ];
}
node query(int l, int r, int x, int a, int b)
{
if(l > b || r < a) return tree[];
if(l >= a && r <= b) return tree[x];
pushdown(x);
int mid = (l + r) >> ;
return (query(l, mid, x << , a, b)) + (query(mid + , r, x << | , a, b));
}
void reverse(int l, int r, int x, int a, int b)
{
if(l > b || r < a) return;
if(l >= a && r <= b)
{
paint(tree[x]);
return;
}
pushdown(x);
int mid = (l + r) >> ;
reverse(l, mid, x << , a, b);
reverse(mid + , r, x << | , a, b);
tree[x] = tree[x << ] + tree[x << | ];
}
void update(int l, int r, int x, int pos, int v)
{
if(l == r)
{
tree[x] = node(l, v);
return;
}
pushdown(x);
int mid = (l + r) >> ;
if(pos <= mid) update(l, mid, x << , pos, v);
else update(mid + , r, x << | , pos, v);
tree[x] = tree[x << ] + tree[x << | ];
}
int main()
{
read_in();
fread(n);
for(int i = ; i <= n; ++i) fread(a[i]);
tree[].tag = -;
build(, n, );
fread(q);
while(q--)
{
int opt, l, r, v;
fread(opt);
if(opt == )
{
fread(l);
fread(v);
update(, n, , l, v);
}
if(opt == )
{
fread(l);
fread(r);
fread(v);
int sum = , top = ;
while(v--)
{
node ans = query(, n, , l, r);
if(ans.mx.v <= ) break;
reverse(, n, , ans.mx.l, ans.mx.r);
node tmp = query(, n, , ans.mx.l, ans.mx.r);
st[++top] = ans;
sum += ans.mx.v;
}
printf("%d\n", sum);
for(int i = top; i; --i) reverse(, n, , st[i].mx.l, st[i].mx.r);
}
}
return ;
}

bzoj3638的更多相关文章

  1. 【BZOJ3638】Cf172 k-Maximum Subsequence Sum 线段树区间合并(模拟费用流)

    [BZOJ3638]Cf172 k-Maximum Subsequence Sum Description 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交 ...

  2. 【BZOJ-3638&3272&3267&3502】k-Maximum Subsequence Sum 费用流构图 + 线段树手动增广

    3638: Cf172 k-Maximum Subsequence Sum Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 9 ...

  3. BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  4. [BZOJ3638 && BZOJ3272]带修区间不相交最大K子段和(线段树模拟费用流)

    https://www.cnblogs.com/DaD3zZ-Beyonder/p/5634149.html k可重区间集问题有两种建图方式,可能这一种才可以被线段树优化. 换个角度看,这也是一个类似 ...

  5. BZOJ3638|CodeForces 280D k-Maximum Subsequence Sum

    题目链接:戳我 一类典型模型.线段树模拟网络流+区间最大K段和. 因为不会写,所以参考了黄学长的博客.但是我觉得他说得不够详细,所以想好好地解释一下: 前置技能1:区间最大子段和 如果K=1的时候怎么 ...

  6. 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  7. bzoj3638 Cf172 k-Maximum Subsequence Sum

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3638 [题解] 看到k<=20就感觉很py了啊 我们用一棵线段树维护选段的过程,能选到 ...

  8. [转载]hzwer的bzoj题单

    counter: 664BZOJ1601 BZOJ1003 BZOJ1002 BZOJ1192 BZOJ1303 BZOJ1270 BZOJ3039 BZOJ1191 BZOJ1059 BZOJ120 ...

  9. BZOJ刷题列表【转载于hzwer】

    沿着黄学长的步伐~~ 红色为已刷,黑色为未刷,看我多久能搞完吧... Update on 7.26 :之前咕了好久...(足见博主的flag是多么emmm......)这几天开始会抽时间刷的,每天几道 ...

随机推荐

  1. rabbitmq management Login Failed

    默认用户guest 只允许localhost登录. so... 我们自己建立用户 1. 用户管理 用户管理包括增加用户,删除用户,查看用户列表,修改用户密码. 相应的命令 (1) 新增一个用户 rab ...

  2. sublime text 3注册码

    —– BEGIN LICENSE —– Michael Barnes Single User License EA7E-821385 8A353C41 872A0D5C DF9B2950 AFF6F6 ...

  3. Go---Redis连接池

    之前一篇文章介绍过使用redigo连接redis数据库处理,在使用中发现如果初始化一条链接连接redis做相关操作,使用中发现当两个程序交替使用redis时,先前建立的链接会断掉,只能每次操作的时候重 ...

  4. 各种Js插件汇总;JavaScript插件

    1.jquery信息提示插件: https://blog.csdn.net/u013517229/article/details/78291841 http://www.jqueryfuns.com/ ...

  5. 【C++基础 02】深拷贝和浅拷贝

    我的主题是.每天积累一点点. =========================================== 在类定义中,假设没有提供自己的拷贝构造函数,则C++提供一个默认拷贝构造函数. C ...

  6. Objective-c写冒泡排序

    做面试题遇到用obj-c写冒泡排序,随便写了个 - (NSMutableArray *)sorted:(NSMutableArray *)array { int len = [array count] ...

  7. 【python】super()

    转自: http://www.cnblogs.com/lovemo1314/archive/2011/05/03/2035005.html

  8. 【c++】面向对象程序设计之继承中的类作用域

    当存在继承关系时,派生类的作用域嵌套在其基类的作用域之内. 一个对象.引用或指针的静态类型决定了该对象的哪些成员是可见的.即使静态类型与动态类型可能不一致,但我们使用哪些成员仍然是由静态类型决定的.基 ...

  9. php.ini中extension默许的地址到底在哪里设置的

    原文: http://www.myexception.cn/php/1436096.html ----------------------------------------------------- ...

  10. 推荐-zabbix原理篇

    推荐-zabbix原理篇(1) 提交 我的留言 加载中 已留言 本文大纲 snmp介绍 监控流程 开源监控工具zabbix zabbix监控功能的实现 支持数据库存储类型 Zabbix架构中的组件 Z ...