找出的规律。。。。

1 2
3
2 2
7
3 2
15
4 2
31
5 2
63 1 3
4
2 3
13
3 3
40
4 3
121
5 3
361

然后我们来推个公式:

比如说a2=3a1+1,

我们可以看到

等比是m,

然后凑一下,

1+x=m*x

x=1/(m-1)

上面那个例子就凑成了这个样子,

(a2+1/2)/(a1+1/2)=3

所以首项是:m+1+[1/(m-1)]

第n项是:[m+1+1/(m-1)]*m^(n-1)

答案是:[m+1+1/(m-1)]*m^(n-1)-1/(m-1);

那么答案就是:[m^(n+1)-1]/(m-1);

mdzz,我真蠢。

巨巨加油~

23333333333,神队友去写然后wa了。。。。

除法还要逆元,求逆元有两种方法,一个就是扩展欧几里得,另一个有点特殊,就是费马小定理。

复习一下:

因为取膜不适用与除法,所以当我们要求(a/b)mod p的时候呢,要拐个弯,求一下b的逆元,其实说白了,在算式里,小白理解就是他的倒数嘛。

那么就是b*k=1;k=1/b;

带入(a/b) mod p,就是(a*k)mod p,取膜适用乘法~好,我们来求逆元。

算b的逆元k,k=1/b;我来转换一下,就是直接设成这样的,k=(px+1)/b;然后带到(a*k)mod p,得(a/b)mod p;

那么就是直接求个k就好啦,然而 k=(p*x+1)/b;把 b 一移得 k*b-p*x=1;这种形式的不定方程???怎么求啊,exgcd…

在exgcd中,k,x都是未知数,然后b,-p是常量,跑一跑exgcd就好啦。

然后我再温习一下exgcd吧。

首先给出适用条件,对于这种单纯利用exgcd的题,这个条件也是切入点啊。对于不定整数方程AX+BY=C,若 C mod gcd(A, B)=0,则该方程存在整数解,否则不存在 x , y 整数解。

在我们这个求逆元环节中,A=b,B=-p,很明显在我们本道题里,p是1e9+7是素数,那么gcd就=1,所以满足。

然后exgcd的推导?额。。。接下来会看的很烦,而且没有乘号但是。。我觉得读者在草稿纸上列个小公式会很清楚的。

对于ax+by=gcd(a,b);

我们设一下a>b,在简单直接把b=0时,gcd(a,b)=a.此时,x=1,y=0;

接着,a>b>0,我们这里可以摆两个式子:①:ax1+by1=gcd(a,b);继续,②:bx2+(a mod b)y2=gcd( b , a mod b );第二个式子为何呢?这就是gcd的辗转相除法的算法啊。而且gcd(a,b)=gcd(b,a mod b);

然后我们就能将gcd左边两个等式列个等式:ax1+by1=bx2+(a mod b)y2;额。。。a mod b可以写成?a-(a/b)b对吧,那么等式变成ax1+ by1= bx2+ (a - (a / b) * b)y2=bx2+ay2 - (a / b)by2 ;我们把ax1+ by1=bx2+ay2 - (a / b)by2拎出来,整理一下,写成:ax1+by1=ay2+b(x2-(a/b)y2); 那么很明显我们可以得到,x1=y2,y1=x2-(a/b)y2;

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

然后跑的不就是gcd辗转相除法嘛,那么最后一个不定方程不就是b==0的时候return,那个时候x=1,y=0啊,正好递归回来给了前面的x1,y1,一直递归到最开始的不定方程的x1,y1.OK,讲完。

还是自己再温习一个前面说的费马小定理,

以下懒得打了,去某篇大牛blog选摘来的…

费马小定理说,对于素数 M 任意不是 M 的倍数的 b,都有:b ^ (M-1) = 1 (mod M).直接拆成:b * b ^ (M-2) = 1 (mod M)。于是:a / b = a / b * (b * b ^ (M-2)) = a * (b ^ (M-2)) (mod M),但是用费马小定理!!!首先的条件!!!!原blog没讲,mdzz。。。

百度百科倾情奉献:费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。刚好在本道题目一样适用,mod=1e9+7就是质数,那么gcd也就是=1,OK,那么b*k=1这个逆元k=b^(mod-2) = =好像就是这样。

当当当当,看到这边的小伙伴将会得到本道题的最终答案(我知道没有。。。自high一下。。。):

[m^(n+1)-1]*(m-1)^(mod-2)

最终AC代码?自己写吧。。。一个快速幂,,,就好了。。。套个小公式而已,自己动手~丰衣足食~

hdoj5793 A Boring Question【找规律】的更多相关文章

  1. HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  2. hdu_5793_A Boring Question(打表找规律)

    题目链接:hdu_5793_A Boring Question 题意: 自己看吧,说不清楚了. 题解: 打表找规律 #include<cstdio> typedef long long l ...

  3. HDU 5793 A Boring Question (找规律 : 快速幂+逆元)

    A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...

  4. HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)

    参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...

  5. hdu 5793 A Boring Question(2016第六场多校)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. HDU 4861 Couple doubi (数论 or 打表找规律)

    Couple doubi 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/D Description DouBiXp has a ...

  7. HDU 4861 Couple doubi(找规律|费马定理)

    Couple doubi Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  8. hdu 2865 Polya计数+(矩阵 or 找规律 求C)

    Birthday Toy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. HDU 4349 Xiao Ming's Hope 找规律

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...

随机推荐

  1. [React] Use React.memo with a Function Component to get PureComponent Behavior

    A new Higher Order Component (HOC) was recently released in React v16.6.0 called React.memo. This be ...

  2. docker save docker load

    docker save && docker load docker save 镜像1 镜像2 | gzip > images.tar.gz 打包镜像为压缩文件 docker sa ...

  3. Linux下的ELF可执行文件的格式解析 (转)

    LInux命令只是和Kernel一起被编译进操作系统的存在于FS的ELF格式二进制文件,或者权限足够的脚本,或者一个软链 ELF(Executable and Linking Format)是一种对象 ...

  4. VC中常见API函数使用方法(经验版)

    ***********************************************声明*************************************************** ...

  5. poj 2154 Color 欧拉函数优化的ploya计数

    枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...

  6. MySql 查询一周内记录

    本周内:select * from wap_content where week(created_at) = week(now) 查询一天:select * from table where to_d ...

  7. PandoraBox 支持3G无线上网卡(联通卡3G卡)(一)

    一:笔者采用的是系统是OpenWrt之PandoraBox,内核版本3.3.8:硬件设备是MTK的7620开发板. 其中怎么搭建openwrt开发环境在此不用多说,因为既然想实现3G无线上网卡拨号上网 ...

  8. scala快速学习笔记(一):变量函数,操作符,基本类型

    为了用spark,先学下scala. 参考教程:http://meetfp.com/zh/scala-basic doc查询:http://docs.scala-lang.org 其它资料:http: ...

  9. lonlifeOJ1152 “玲珑杯”ACM比赛 Round #19 概率DP

    E -- Expected value of the expression DESCRIPTION You are given an expression: A0O1A1O2A2⋯OnAnA0O1A1 ...

  10. (30)java web的hibernate使用-c3p0连接池配置

    hibernate支持c3p0连接池 需要导入c3p0的jar包 <!-- 配置连接驱动管理类 --> <property name="hibernate.connecti ...