bzoj 1023: [SHOI2008]cactus仙人掌图【tarjan+dp+单调队列】
本来想先求出点双再一个一个处理结果写了很长发现太麻烦
设f[u]为u点向下的最长链
就是再tarjan的过程中,先照常处理,用最长儿子链和次长儿子链更新按ans,然后处理以这个点为根的环,也就是这个点是dfs第一次到这个环访问到的点
环用来更新ans的是儿子链+到根的一段,这个直接for一边就行,还有就是一个儿子链+环上的一段+另一个儿子链,这个把环复制一遍然后单调队列扫即可
注意距离的定义是最短距离!
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,h[N],cnt,fa[N],de[N],f[N],s[N],dfn[N],low[N],dft,ans,a[N],q[N];
struct qwe
{
int ne,to;
}e[N*10];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs(int u,int fat)
{
dfn[u]=low[u]=++dft;
fa[u]=fat;
de[u]=de[fat]+1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fat)
{
if(!dfn[e[i].to])
{
dfs(e[i].to,u);
low[u]=min(low[u],low[e[i].to]);
}
else
low[u]=min(low[u],dfn[e[i].to]);
if(low[e[i].to]>dfn[u])
{
ans=max(ans,f[u]+f[e[i].to]+1);
f[u]=max(f[u],f[e[i].to]+1);
}
}
for(int j=h[u];j;j=e[j].ne)
if(fa[e[j].to]!=u&&dfn[e[j].to]>dfn[u])
{
int tot=de[e[j].to]-de[u]+1,l=1,r=1;
q[1]=1;
for(int x=e[j].to;x!=u;x=fa[x])
a[tot--]=f[x];
a[tot]=f[u];
tot=de[e[j].to]-de[u]+1;
for(int i=1;i<=tot;i++)
a[i+tot]=a[i];
for(int i=2;i<=2*tot;i++)
{
while(l<=r&&i-q[l]>tot/2)
l++;
if(l<=r)
ans=max(ans,a[i]+i+a[q[l]]-q[l]);
while(l<=r&&a[q[r]]-q[r]<=a[i]-i)
r--;
q[++r]=i;
}
for(int i=2;i<=tot;i++)
f[u]=max(f[u],a[i]+min(i-1,tot-i+1));
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
int k=read(),la=read(),x;
for(int j=2;j<=k;j++)
{
x=read();
add(la,x),add(x,la);
la=x;
}
}
dfs(1,0);
printf("%d\n",ans);
return 0;
}
bzoj 1023: [SHOI2008]cactus仙人掌图【tarjan+dp+单调队列】的更多相关文章
- bzoj 1023: [SHOI2008]cactus仙人掌图 tarjan缩环&&环上单调队列
1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1141 Solved: 435[Submit][ ...
- BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)
题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...
- 【刷题】BZOJ 1023 [SHOI2008]cactus仙人掌图
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- bzoj 1023: [SHOI2008]cactus仙人掌图 2125: 最短路 4728: 挪威的森林 静态仙人掌上路径长度的维护系列
%%% http://immortalco.blog.uoj.ac/blog/1955 一个通用的写法是建树,对每个环建一个新点,去掉环上的边,原先环上每个点到新点连边,边权为点到环根的最短/长路长度 ...
- bzoj 1023: [SHOI2008]cactus仙人掌图
这道题是我做的第一道仙人掌DP,小小纪念一下…… 仙人掌DP就是环上的点环状DP,树上的点树上DP.就是说,做一遍DFS,DFS的过程中处理出环,环上的点先不DP,先把这些换上的点的后继点都处理出来, ...
- BZOJ 1023: [SHOI2008]cactus仙人掌图 | 在仙人掌上跑DP
题目: 求仙人掌直径 http://www.lydsy.com/JudgeOnline/problem.php?id=1023 题解: 首先给出仙人掌的定义:满足所有的边至多在一个环上的无向联通图 我 ...
- bzoj 1023 [SHOI2008]cactus仙人掌图 ( poj 3567 Cactus Reloaded )——仙人掌直径模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023 http://poj.org/problem?id=3567 因为lyd在讲课,所以有 ...
- 1023: [SHOI2008]cactus仙人掌图 - BZOJ
Description如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路 ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
随机推荐
- Multi-company rules
Object Name Domain 说明 Point of Sale Point Of Sale Order [('company_id', '=', user.company_id.id)] 指派 ...
- C#串口通讯教程 简化一切 只保留核心功能 这可能是最易于理解的一篇教程
C#串口通讯教程 简化一切 只保留核心功能 这可能是最易于理解的一篇教程 串口的定义,请自行了解. C#操作串口通讯在.Net强大类库的支持下,只需要三个步骤: 1 创建 2 打开 3 发送/接受 ...
- Python爬取韩寒所有新浪博客
接上一篇,我们依据第一页的链接爬取了第一页的博客,我们不难发现,每一页的链接就仅仅有一处不同(页码序号),我们仅仅要在上一篇的代码外面加一个循环,这样就能够爬取全部博客分页的博文.也就是全部博文了. ...
- Python 模块的安装与使用
我们知道使用函数不仅减轻了工作量,而且使代码更加简洁,更加的易于维护.但如果在另一个文件中,我们希望使用上一个文件中定义的某个函数,我们应该怎么办呢?我们需要重新将上一个函数再次实现一遍吗?而且,当我 ...
- IE浏览器部分版本不支持background-size属性问题
background-size是CSS3新增的属性,但是IE8以下还是不支持,可以通过滤镜来实现这样的一个效果 background-size:contain; // 缩小图片来适应元素的尺寸(保持像 ...
- (转)使用MAT比较多个heap dump文件
使用MAT比较多个heap dump文件 调试内存泄露时,有时候适时比较2个或多个heap dump文件是很有用的.这时需要生成多个单独的HPROF文件. 下面是一些关于如何在MAT里比较多个heap ...
- 常用到的JS 验证(包括例子)
//验证是否为空 function check_blank(obj, obj_name){ if(obj.value != ''){ retur ...
- CrateDb
CrateDB: Real-time SQL Database for Machine Data & IoT | Crate.io https://crate.io/
- vue开发总结(一)
vue使用快一个多月了,从移动端到PC端,踩过的坑也不少.项目的开发是基于element ui 与 mint ui 组件库,下面总结下项目中的一些知识点: 一.网页数据请求 首次进入页面,需要请求数据 ...
- RedisCluster集群搭建
搭建集群方案 安装部署任何一个应用其实都很简单,只要安装步骤一步一步来就行了.下面说一下 Redis 集群搭建规划,由于集群至少需要6个节点(3主3从模式),所以,没有这么多机器给我玩,我本地也起不了 ...