洛谷P4841 城市规划(多项式求逆)
这题太珂怕了……如果是我的话完全想不出来……
//minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define mul(x,y) (1ll*(x)*(y)%P)
#define add(x,y) (x+y>=P?x+y-P:x+y)
#define dec(x,y) (x-y<0?x-y+P:x-y)
using namespace std;
const int N=,P=;
inline int ksm(int a,ll b){
int res=;
while(b){
if(b&) res=mul(res,a);
a=mul(a,a),b>>=;
}
return res;
}
int n,r[N],A[N],B[N],fac[N],finv[N],O[N],C[N],F[N],G[N];
inline void init(){
fac[]=fac[]=finv[]=;
for(int i=;i<=n;++i) fac[i]=mul(fac[i-],i);
finv[n]=ksm(fac[n],P-);
for(int i=n-;i;--i) finv[i]=mul(finv[i+],i+);
}
void NTT(int *A,int type,int len){
int limit=,l=;
while(limit<len) limit<<=,++l;
for(int i=;i<limit;++i)
r[i]=(r[i>>]>>)|((i&)<<(l-));
for(int i=;i<limit;++i)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int mid=;mid<limit;mid<<=){
int R=mid<<,Wn=ksm(,(P-)/R);O[]=;
for(int j=;j<mid;++j) O[j]=mul(O[j-],Wn);
for(int j=;j<limit;j+=R){
for(int k=;k<mid;++k){
int x=A[j+k],y=mul(O[k],A[j+k+mid]);
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
}
}
}
if(type==-){
reverse(A+,A+limit);
for(int i=,inv=ksm(limit,P-);i<limit;++i)
A[i]=mul(A[i],inv);
}
}
void Inv(int *a,int *b,int len){
if(len==) return (void)(b[]=ksm(a[],P-));
Inv(a,b,len>>);
for(int i=;i<len;++i) F[i]=a[i],G[i]=b[i];
NTT(F,,len<<),NTT(G,,len<<);
for(int i=;i<(len<<);++i)
F[i]=mul(mul(F[i],G[i]),G[i]);
NTT(F,-,len<<);
for(int i=;i<len;++i) b[i]=(1ll*(b[i]<<)%P+P-F[i])%P;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);init();
int len=;for(len=;len<=(n*);len<<=);
A[]=;
for(int i=;i<=n;++i) A[i]=mul(ksm(,1ll*i*(i-)/),finv[i]);
Inv(A,B,len);
for(int i=;i<=n;++i) C[i]=mul(ksm(,1ll*i*(i-)/),finv[i-]);
NTT(B,,len),NTT(C,,len);
for(int i=;i<len;++i) B[i]=mul(B[i],C[i]);
NTT(B,-,len);
printf("%d\n",mul(B[n],fac[n-]));
return ;
}
洛谷P4841 城市规划(多项式求逆)的更多相关文章
- 【洛谷4238】 多项式求逆(NTT,分治)
前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...
- 洛谷P4841 城市规划 [生成函数,NTT]
传送门 题意简述:求\(n\)个点的简单无向连通图的数量\(\mod \;1004535809\),\(n \leq 130000\) 经典好题呀!这里介绍两种做法:多项式求逆.多项式求对数 先 ...
- BZOJ 3456: 城市规划 多项式求逆
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...
- 洛谷 P4841 城市规划 解题报告
P4841 城市规划 题意 n个有标号点的简单(无重边无自环)无向连通图数目. 输入输出格式 输入格式: 仅一行一个整数\(n(\le 130000)\) 输出格式: 仅一行一个整数, 为方案数 \( ...
- 【BZOJ3456】城市规划 多项式求逆
[BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...
- 洛谷 P4841 城市规划
构造简单无向图的EGF: \[ G(x)=\sum_{i}^{\infty}2^{\binom{i}{2}}\cdot\frac{x^i}{i!} \] 构造简单无向连通图的EGF: \[ F(x)= ...
随机推荐
- weexpack build android 和 weexpack run android 报错 及 解决方案
1. weexpack build android (1)Configuring > 0/3 projects > root project > Resolving dependen ...
- Dos 改动IP 地址
1.改动 ip地址 子网掩码 默认网关 netsh interface ip set address "本地连接" static 192.168.1.23 255.255.255. ...
- Printing multipage output
Printing known-length multipage output Using the PrintDataGrid control for multipage grids Example: ...
- 带GPG签名的Git tag
原文地址http://airk000.github.io/git/2013/09/30/git-tag-with-gpg-key Git tag ###Tag用来做什么? Tag即标签,用以给项目仓储 ...
- SIFT算法中DoG特征点的修正
SIFT算法中,在DoG空间找到极值点后,需要对极值点进行修正,本文主要详细的讲解一下为什么需要修正,以及如何对极值点进行修正. 下图演示了二维函数离散空间得到的极值点与连续空间的极值点之间的差别 利 ...
- OpenStack源码系列---起始篇
近一年来我负责公司云点的自动化部署工作,包括公司自有云平台方案.XenServer.vSphere.Ovirt和OpenStack的自动化安装部署,目前已经到了OpenStack这一部分.自动化部署首 ...
- 使用Axis2开发WebService
一.准备 1.下载Axis2.eclipse插件 axis2-1.6.2-war.zip: http://mirror.bjtu.edu.cn/apache//axis/axis2/java/core ...
- WM_GETMINMAXINFO的作用 .
如果想要实现窗口全屏,并且还有状态栏,会出现问题,那就是OnGetMinMaxInfo函数的作用.你可以试一下,如果把这个函数去掉,则当你按下工具栏中的全屏显示按钮时,框架视图确实变大了,但没有想象的 ...
- (白书训练计划)UVa 11572 Unique Snowflakes(窗体滑动法)
题目地址:UVa 11572 这样的方法曾经接触过,定义两个指针,不断从左向右滑动,推断指针内的是否符合要求. 这个题为了能高速推断是否有这个数,能够用STL中的set. 代码例如以下: #inclu ...
- EventStore文件存储设计
背景 ENode是一个CQRS+Event Sourcing架构的开发框架,Event Sourcing需要持久化事件,事件可以持久化在DB,但是DB由于面向的是CRUD场景,是针对数据会不断修改或删 ...