中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
    void addNum(int num) - 从数据流中增加一个整数到数据结构中。
    double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/

Java实现:

参考:https://www.cnblogs.com/Liok3187/p/4928667.html

O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。

class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap; /**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
} public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
} public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

C++实现:

方法一:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
} void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>()); num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); }
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
} } double findMedian() {
int size = minH.size() + maxH.size(); double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法二:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
} double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法三:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
} double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法四:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
} double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

参考:https://blog.csdn.net/sjt19910311/article/details/50883735

https://www.cnblogs.com/grandyang/p/4896673.html

295 Find Median from Data Stream 数据流的中位数的更多相关文章

  1. [leetcode]295. Find Median from Data Stream数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  2. [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)

    295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...

  3. 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)

    注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...

  4. [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. 【LeetCode】295. Find Median from Data Stream 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...

  6. 295. Find Median from Data Stream

    题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...

  7. leetcode@ [295]Find Median from Data Stream

    https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...

  8. [LC] 295. Find Median from Data Stream

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  9. LeetCode——295. Find Median from Data Stream

    一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...

随机推荐

  1. P1230 智力大冲浪 洛谷

    https://www.luogu.org/problem/show?pid=1230 题目描述 小伟报名参加中央电视台的智力大冲浪节目.本次挑战赛吸引了众多参赛者,主持人为了表彰大家的勇气,先奖励每 ...

  2. Spring Cloud(7):Zuul自定义过滤器和接口限流

    上文讲到了Zuul的基本使用: https://www.cnblogs.com/xuyiqing/p/10884860.html 自定义Zuul过滤器: package org.dreamtech.a ...

  3. 洛谷 P1883 函数

    P1883 函数 题目描述 给定n个二次函数f1(x),f2(x),...,fn(x)(均形如ax^2+bx+c),设F(x)=max{f1(x),f2(x),...,fn(x)},求F(x)在区间[ ...

  4. ImportError: No module named MySQLdb解决办法

    http://blog.slogra.com/post-429.html http://blog.sina.com.cn/s/blog_74a7e56e0101a7qy.html 今天突发奇想在服务器 ...

  5. div拖拽缩放jquery插件编写——带8个控制点

    项目中需要对div进行拖拽缩放,需要有控制面板8个控制点的那种,原以为这么常见的效果应该能搜索到很多相关插件,然而可以完成拖拽的实繁,却找不到我想要的,还是自己动手丰衣足食吧 效果预览(只支持pc端) ...

  6. cmd启动Oracle服务和监听服务

    启动数据库服务 net start oracleserviceorcl 启动数据库监听 lsnrctl start

  7. mybatis之if else语句

    最近项目中遇到一个相同表设计,但是表名不同的sql语句操作. 在遇到这样的情况时候可以用一下方式: <choose> <when test=""> //.. ...

  8. gcc优化选项解析

    1 -fno-defer-pop 函数返回的时候,就立即将栈里面放置的该函数的参数pop出来.这样可以避免函数参数占用过多的栈空间. 2 -fforward-propagate ? 3 -ffp-co ...

  9. clojure学习记录

    take 从列表中获取子列表 into a b  把b conj 到a中 (defn count-a-seq [lat]  (reduce (fn [x y] (+ x 1)) 0 lat)) red ...

  10. HDU 4070 + 赤裸裸的贪心~~

    J - Phage War Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Phage ...