中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
    void addNum(int num) - 从数据流中增加一个整数到数据结构中。
    double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/

Java实现:

参考:https://www.cnblogs.com/Liok3187/p/4928667.html

O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。

class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap; /**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
} public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
} public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

C++实现:

方法一:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
} void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>()); num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); }
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
} } double findMedian() {
int size = minH.size() + maxH.size(); double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法二:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
} double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法三:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
} double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法四:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
} double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

参考:https://blog.csdn.net/sjt19910311/article/details/50883735

https://www.cnblogs.com/grandyang/p/4896673.html

295 Find Median from Data Stream 数据流的中位数的更多相关文章

  1. [leetcode]295. Find Median from Data Stream数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  2. [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)

    295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...

  3. 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)

    注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...

  4. [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. 【LeetCode】295. Find Median from Data Stream 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...

  6. 295. Find Median from Data Stream

    题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...

  7. leetcode@ [295]Find Median from Data Stream

    https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...

  8. [LC] 295. Find Median from Data Stream

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  9. LeetCode——295. Find Median from Data Stream

    一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...

随机推荐

  1. nyoj_308_Substring_201405091611

    Substring 时间限制:1000 ms  |           内存限制:65535 KB 难度:1   描述 You are given a string input. You are to ...

  2. MySQL架构优化实战系列4:SQL优化步骤与常用管理命令

  3. C#中使用 Oracle的事务与存储过程

    1 存储过程 1.1 不带参数,没有返回值 创建表 create table test (ID number, NAME varchar2(), SEX varchar2(), AGE number, ...

  4. WebLogic11g-创建域(Domain)及基本配置

      最近看到经常有人提问weblogic相关问题,所以闲暇之际写几篇博文(基于weblogic11),仅供大家参考. 具体weblogic的介绍以及安装,这里就不赘述了. 以域的创建开篇,虽然简单,但 ...

  5. C#高级编程五十二天----有序列表

    有序列表 假设须要基于对全部集合排序,就能够使用SortedList<TKey,TValue>类.这个类依照键给元素排序.这个集合中的值和键都能够使用随意类型. 以下的样例创建了一个有序列 ...

  6. Android 最火框架XUtils之注解机制具体解释

    在上一篇文章Android 最火的高速开发框架XUtils中简介了xUtils的基本用法,这篇文章说一下xUtils里面的注解原理. 先来看一下xUtils里面demo的代码: @ViewInject ...

  7. unigui组件中client javascript delphi组件之间的操作

    UniLabel组件: function OnClick(sender, e){ MainForm.UniLabel1.setText('Click!');} function Onmousemove ...

  8. data-toggle data-target

    data-toggle https://stackoverflow.com/questions/30629974/how-does-the-data-toggle-attribute-work-wha ...

  9. mysql中decimal的使用

    float,double,decimal区别 创建表test_float_double_decimal CREATE TABLE `test_float_double_decimal` ( `id` ...

  10. 8-12 canvas专题-阶段练习一(上)

    8-12 canvas专题-阶段练习一(上) <!DOCTYPE html> <html lang="zh-cn"> <head> <me ...