中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
    void addNum(int num) - 从数据流中增加一个整数到数据结构中。
    double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/

Java实现:

参考:https://www.cnblogs.com/Liok3187/p/4928667.html

O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。

class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap; /**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
} public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
} public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

C++实现:

方法一:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
} void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>()); num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); }
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
} } double findMedian() {
int size = minH.size() + maxH.size(); double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法二:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
} double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法三:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
} double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法四:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
} double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

参考:https://blog.csdn.net/sjt19910311/article/details/50883735

https://www.cnblogs.com/grandyang/p/4896673.html

295 Find Median from Data Stream 数据流的中位数的更多相关文章

  1. [leetcode]295. Find Median from Data Stream数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  2. [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)

    295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...

  3. 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)

    注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...

  4. [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. 【LeetCode】295. Find Median from Data Stream 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...

  6. 295. Find Median from Data Stream

    题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...

  7. leetcode@ [295]Find Median from Data Stream

    https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...

  8. [LC] 295. Find Median from Data Stream

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  9. LeetCode——295. Find Median from Data Stream

    一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...

随机推荐

  1. MSDN 同步部分 个人笔记

    (在知乎看到轮子哥说,掌握了MSDN上的并发部分 和 线程与进程部分就可以掌握所有语言的多线程编程,我在网上翻了一下并没有中文版,所以决定自己翻译一下...) 目录: 线程之间协同运行的方式有许多种, ...

  2. 洛谷——P1454 圣诞夜的极光

    P1454 圣诞夜的极光 题目背景 圣诞夜系列~~ 题目描述 圣诞老人回到了北极圣诞区,已经快到12点了.也就是说极光表演要开始了.这里的极光不是极地特有的自然极光景象.而是圣诞老人主持的人造极光. ...

  3. Letter Combinations of a Phone Number(带for循环的DFS,组合问题,递归总结)

    Given a digit string, return all possible letter combinations that the number could represent. A map ...

  4. operamasks—omMessageTip的使用

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  5. 立面图 平面图 剖面图 CAD

    http://www.qinxue.com/88.html http://www.xsteach.com/course/2855 前后左右各个侧面的外部投影图——立面图:对建筑物各个侧面进行投影所得到 ...

  6. 程序猿Web面试之JSON

     JSON是什么? JSON(JavaScript对象表示法), 是在网络通信下.经常使用的一种数据表达格式,它有助于我们于一个自描写叙述的,独立的和轻的方式呈现并交换数据. 这些数据能够易于和转 ...

  7. 神马都是浮云,unity中自己写Coroutine协程源代码

    孙广东   2014.7.19 无意之间看到了,Unity维基上的一篇文章,  是关于自己写协程的介绍. 认为非常好,这样能更好的了解到协程的执行机制等特性.还是不错的. 原文链接地址例如以下: ht ...

  8. Matplotlib作图基础

    折线图 import matplotlib.pylab as pylab import numpy as npy x=[1,2,3,4,8] y=[5,7,2,1,5] #折线图 pylab.plot ...

  9. 实现一个简易的express中间件

    代码: // 通过闭包实现单例 const Middlewave = (function(){ let instance; class Middlewave{ constructor() { this ...

  10. go5--数组

    package main /* 数组Array 定义数组的格式:var <varName> [n]<type>,n>=0 数组长度也是类型的一部分,因此具有不同长度的数组 ...