295 Find Median from Data Stream 数据流的中位数
中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中增加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/
Java实现:
参考:https://www.cnblogs.com/Liok3187/p/4928667.html
O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。
class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap;
/**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
}
public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
}
public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
C++实现:
方法一:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
}
void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>());
}
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>());
num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
}
}
double findMedian() {
int size = minH.size() + maxH.size();
double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法二:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
}
double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法三:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
}
double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
方法四:
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
}
double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
参考:https://blog.csdn.net/sjt19910311/article/details/50883735
https://www.cnblogs.com/grandyang/p/4896673.html
295 Find Median from Data Stream 数据流的中位数的更多相关文章
- [leetcode]295. Find Median from Data Stream数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)
295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...
- 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)
注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...
- [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- 【LeetCode】295. Find Median from Data Stream 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...
- 295. Find Median from Data Stream
题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...
- leetcode@ [295]Find Median from Data Stream
https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...
- [LC] 295. Find Median from Data Stream
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- LeetCode——295. Find Median from Data Stream
一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...
随机推荐
- nyoj_308_Substring_201405091611
Substring 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 You are given a string input. You are to ...
- MySQL架构优化实战系列4:SQL优化步骤与常用管理命令
- C#中使用 Oracle的事务与存储过程
1 存储过程 1.1 不带参数,没有返回值 创建表 create table test (ID number, NAME varchar2(), SEX varchar2(), AGE number, ...
- WebLogic11g-创建域(Domain)及基本配置
最近看到经常有人提问weblogic相关问题,所以闲暇之际写几篇博文(基于weblogic11),仅供大家参考. 具体weblogic的介绍以及安装,这里就不赘述了. 以域的创建开篇,虽然简单,但 ...
- C#高级编程五十二天----有序列表
有序列表 假设须要基于对全部集合排序,就能够使用SortedList<TKey,TValue>类.这个类依照键给元素排序.这个集合中的值和键都能够使用随意类型. 以下的样例创建了一个有序列 ...
- Android 最火框架XUtils之注解机制具体解释
在上一篇文章Android 最火的高速开发框架XUtils中简介了xUtils的基本用法,这篇文章说一下xUtils里面的注解原理. 先来看一下xUtils里面demo的代码: @ViewInject ...
- unigui组件中client javascript delphi组件之间的操作
UniLabel组件: function OnClick(sender, e){ MainForm.UniLabel1.setText('Click!');} function Onmousemove ...
- data-toggle data-target
data-toggle https://stackoverflow.com/questions/30629974/how-does-the-data-toggle-attribute-work-wha ...
- mysql中decimal的使用
float,double,decimal区别 创建表test_float_double_decimal CREATE TABLE `test_float_double_decimal` ( `id` ...
- 8-12 canvas专题-阶段练习一(上)
8-12 canvas专题-阶段练习一(上) <!DOCTYPE html> <html lang="zh-cn"> <head> <me ...