中位数是排序后列表的中间值。如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值。
示例:
[2,3,4] , 中位数是 3
[2,3], 中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
    void addNum(int num) - 从数据流中增加一个整数到数据结构中。
    double findMedian() - 返回目前所有元素的中位数。
例如:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
详见:https://leetcode.com/problems/find-median-from-data-stream/description/

Java实现:

参考:https://www.cnblogs.com/Liok3187/p/4928667.html

O(nlogn)的做法是开两个堆(java用优先队列代替)。
最小堆放小于中位数的一半,最大堆放较大的另一半。
addNum操作,把当前的num放到size小的堆中,通过2次poll-add操作,保证了最小堆中的所有数都小于最大堆中的数。
findMedian操作,如果size不同,就是其中一个堆顶,否则就是连个堆顶的数相加除以2。

class MedianFinder {
private Queue<Integer> maxHeap;
private Queue<Integer> minHeap; /**
* initialize your data structure here.
*/
public MedianFinder() {
this.maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
this.minHeap = new PriorityQueue<Integer>();
} public void addNum(int num) {
if (maxHeap.size() < minHeap.size()) {
maxHeap.add(num);
minHeap.add(maxHeap.poll());
maxHeap.add(minHeap.poll());
} else {
minHeap.add(num);
maxHeap.add(minHeap.poll());
minHeap.add(maxHeap.poll());
}
} public double findMedian() {
if (maxHeap.size() < minHeap.size()) {
return minHeap.peek();
} else if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
} else {
return (minHeap.peek() + maxHeap.peek()) / 2.0;
}
}
} /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

C++实现:

方法一:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
maxH={};
minH={};
} void addNum(int num) {
if(((minH.size() + maxH.size()) & 0x1) == 0)
{
if(!maxH.empty() && num<maxH[0])
{
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>()); num = maxH[0];
pop_heap(maxH.begin(),maxH.end(),less<int>());
maxH.pop_back();
}
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); }
else
{
if(!minH.empty() && num>minH[0])
{
minH.push_back(num);
push_heap(minH.begin(),minH.end(),greater<int>()); num = minH[0];
pop_heap(minH.begin(),minH.end(),greater<int>());
minH.pop_back();
}
maxH.push_back(num);
push_heap(maxH.begin(),maxH.end(),less<int>());
} } double findMedian() {
int size = minH.size() + maxH.size(); double median = 0;
if((size&0x1) == 1)
{
median = minH[0];
}
else
{
median = (minH[0]+maxH[0])*0.5;
}
return median;
}
private:
vector<int> maxH;
vector<int> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法二:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.push(num);
large.push(-small.top());
small.pop();
if(small.size()<large.size())
{
small.push(-large.top());
large.pop();
}
} double findMedian() {
return small.size()>large.size()?small.top():0.5*(small.top()-large.top());
}
private:
priority_queue<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法三:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
small.insert(num);
large.insert(-*small.begin());
small.erase(small.begin());
if(small.size()<large.size())
{
small.insert(-*large.begin());
large.erase(large.begin());
}
} double findMedian() {
return small.size()>large.size()?*small.begin():0.5*(*small.begin()-*large.begin());
}
private:
multiset<int> small,large;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

方法四:

class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
if(maxH.empty()||num<=maxH.top())
{
maxH.push(num);
}
else
{
minH.push(num);
}
if(minH.size()+2==maxH.size())
{
minH.push(maxH.top());
maxH.pop();
}
if(maxH.size()+1==minH.size())
{
maxH.push(minH.top());
minH.pop();
}
} double findMedian() {
return minH.size()==maxH.size()?0.5*(minH.top()+maxH.top()):maxH.top();
}
private:
priority_queue<int,vector<int>,less<int>> maxH;
priority_queue<int,vector<int>,greater<int>> minH;
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/

参考:https://blog.csdn.net/sjt19910311/article/details/50883735

https://www.cnblogs.com/grandyang/p/4896673.html

295 Find Median from Data Stream 数据流的中位数的更多相关文章

  1. [leetcode]295. Find Median from Data Stream数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  2. [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)

    295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...

  3. 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)

    注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...

  4. [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. 【LeetCode】295. Find Median from Data Stream 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...

  6. 295. Find Median from Data Stream

    题目: Median is the middle value in an ordered integer list. If the size of the list is even, there is ...

  7. leetcode@ [295]Find Median from Data Stream

    https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...

  8. [LC] 295. Find Median from Data Stream

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  9. LeetCode——295. Find Median from Data Stream

    一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...

随机推荐

  1. poj - 2195 Going Home (费用流 || 最佳匹配)

    http://poj.org/problem?id=2195 对km算法不理解,模板用的也不好. 下面是大神的解释. KM算法的要点是在相等子图中寻找完备匹配,其正确性的基石是:任何一个匹配的权值之和 ...

  2. spring boot 学习-创建方式

    spring boot是什么 spring boot 是一个快速开发框架,适合小白快速上手开发,它集成了很多优秀的和常用的第三方框架,它简化了xml配置,完全采用注解方式,内部集成了Tomcat.Je ...

  3. Model、ModelMap、ModelAndView的使用和区别

    1.Model的使用 数据传递:Model是通过addAttribute方法向页面传递数据的: 数据获取:JSP页面可以通过el表达式或C标签库的方法获取数据: return:return返回的是指定 ...

  4. Ubuntu 16.04安装Ubuntu After Install工具实现常用软件批量安装

    这个软件集成了常用且好用的软件,且只需要选择需要的软件之后自动安装好,不需要额外设置. 安装: sudo add-apt-repository ppa:thefanclub/ubuntu-after- ...

  5. CTO是有门槛的 我眼中真正优秀CTO应具备五大素质

    最近几个月,不断有人找我推荐CTO人选,这两年互联网创业和创投实在是太火爆了,全民创业,创业项目井喷,一下子发现CTO不够用了,全行业缺CTO,到处都在找CTO.说实话,我自己也没有CTO存货,CTO ...

  6. angular 的ui.router 定义不同的state 对应相同的url

    Angular UI Router: Different states with same URL? The landing page of my app has two states: home-p ...

  7. start-all.sh 启动时报错解决方案

    文件拥有者不是当前用户,或者文件权限没有修改权限 解决方法: sudo chmod 777  "文件名" 或者用 su root 登录,然后删除  再 exit Datanote服 ...

  8. [Unity3D]Unity3D游戏开发之从Unity3D到Eclipse

    ---------------------------------------------------------------------------------------------------- ...

  9. 开放-封闭"原则(OCP)

    Open-Closed Principle原则讲的是:一个软件实体应当对扩展开放,对修改关闭. 优点: 通过扩展已有软件系统,可以提供新的行为,以满足对软件的新的需求,使变化中的软件有一定的适应性和灵 ...

  10. shell脚本 加密备份MySQL数据库

    1.加密备份为.bak文件(实际只是个.zip文件) #!/bin/bash # $:IP地址 # $:用户名 # $:数据库密码 # $:数据库名 # $:加密密码 # $:备份文件名 mysqld ...